
Client Development Introduction Copyright © by TIS

Client Development Introduction 1 / 104 2021/04/15 15:42

Client Development Introduction
Connection to the Server

Connect
This is happening on calling 'Connect':

Checking if an address was set (ServerAddress property).1.
The Client changes its status (OpcClient.State property) to the value Connecting.2.
The Client checks its configuration for validity and conclusiveness.3.
Next the Client tries to find an endpoint.4.
This happens via DiscoveryClient where endpoints with the desired endpoint configuration are
compared and the endpoint fulfilling or at least sufficing the configuration is chosen. An endpoint is
chosen depending on the used settings of the Client.
Next the Client creates the configuration for a new session.5.
Instance certificates are checked:6.

Client certificate (depending on security configuration)1.
Server certificate (the certificate provided by the endpoint)2.

A channel acting as a connection between Client and Server is created.7.
Attempt to create a session via the channel.8.
After further exchange and checking of session data the session gets activated.9.
Finally, available Namespaces are retrieved10.
And precautions for connection surveillance are taken:11.

“KeepAlive-Tracking” for detecting connection abortions1.
“Notification-Tracking” for receiving notifications2.

The Client changes its status (OpcClient.State property) to the value Connected.12.

Disconnect
This is happening on calling 'Disconnect':

The Client changes its status (OpcClient.State property) to the value Disconnecting.1.
The Client releases all gathered resources (e.g. File Handles for OPC UA File Nodes)2.
Ends the connection surveillance3.
The active session is ended.4.
The channel created during Connect is closed and disposed of.5.
The Client changes its status (OpcClient.State property) to the value Disconnected.6.

Client Development Introduction Copyright © by TIS

Client Development Introduction 2 / 104 2021/04/15 15:42

BreakDetection
The “BreakDetection” is a mechanism responsible for the detection of connection abortions using
“KeepAlive”-Tracking to detect a timeout of the connection to the Server. If there is a timeout, the
Client automatically tries to establish a connection to the Server. In case of a newly created
connection a new session often happens. While KeepAlive messages are sent between Client and Server
in KeepAlive in order to “test” the connection and “hold it up”, it is assumed that the connection was
interrupted when response times to a KeepAlive message are too long (= reached timeout?). In that case
another KeepAlive message is sent in increasing time intervals. An aborted connection is assumed if these
messages also are unanswered and the previously described mechanism to re-establish the connection is
introduced. The abortion detection is active by default and can be activated via the
OpcClient.UseBreakDetection property.

Connection Parameters
In order for the Client to connect to the Server the correct parameters have to be set. Generally the
address of the Server (OpcClient.ServerAddress property) is needed. The Uri (= Uniform Resource
Identifier) instance feeds the Client with every primarily necessary information about the Server. The
Server-Address “opc.tcp://192.168.0.80:4840” e.g. contains the information of the scheme “opc.tcp”
(possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) which establishes over which protocol
data is exchanged in which way. In general “opc.tcp” is recommended for OPC UA Servers in a local
network. Servers outside a local network should use “http” or even better “https”. Furthermore the
address defines that the Server is executed on a computer with the IP address “192.168.0.80” and listens
to requests via the port numbered “4840” (which is the default port for the OPC UA, custom port numbers
are also possible). Instead of a static IP address the DNS name of the computer can be used as well, so
instead of “127.0.0.1” also “localhost” can be used.

If the Server does not define an endpoint whose policy uses the security mode “None” (also possible
are “Sign” and “SignAndEncrypt”) for data exchange, this Endpoint-Policy has to be configured
manually (OpcClient.Security.EndpointPolicy property). If, however, an endpoint with the policy
“None” is provided by the Server, the Client automatically chooses it. This behavior is activated by
default and can be deactivated (OpcClient.Security.UseOnlySecureEndpoints property). The
automatic choice of the endpoint can be done according to the OPC Foundation by configuring the
Client in a way that the endpoint defining the highest Policy-Levels per definition (a number)
automatically is the “best” for data exchange. This behavior is deactivated by default but can be
activated (OpcClient.Security.UseHighLevelEndpoint property).

If the Server uses an access control, for example via an ACL (= Access Control List), valid user data
for identifying the user has to be given to the Server before a connection can be established. The
user identity can either be varified through a username-password pair (OpcClientIdentity class) or
through a certificate (OpcCertificateIdentity class). Then the identity has to be mentioned to the
Client (OpcClient.Security.UserIdentity property) in order for it to deliver the identity to the Server
while connecting.

Endpoints
Endpoints result from the cross product of the used base addresses of the Server and the security
strategies supported by the Server. The results are the base addresses of every scheme-port pair
supported, while several schemes (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) can be

Client Development Introduction Copyright © by TIS

Client Development Introduction 3 / 104 2021/04/15 15:42

determined for data exchange on different ports. The hereby linked policies determine the procedure
during the data exchange. Consisting of the Policy Level, the Security-Mode and the Security-Algorithm,
every policy determines the kind of secure data exchange.

For example, when two Security-Policies are followed, they can be defined as follows:

Security-Policy A: Level=0, Security-Mode=None, Security-Algorithm=None
Security-Policy B: Level=1, Security-Mode=Sign, Security-Algorithm=Basic256

When furthermore, for example, three Base-Addresses are combined for different schemes as follows:

Base-Address A: "https://mydomain.com/"
Base-Address B: "opc.tcp://192.168.0.123:4840/"
Base-Address C: "opc.tcp://192.168.0.123:12345/"

The results will be the following endpoint descriptions through the cross product:

Endpoint 1: Address="https://mydomain.com/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 2: Address="https://mydomain.com/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 3: Address="opc.tcp://192.168.0.123:4840/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 4: Address="opc.tcp://192.168.0.123:4840/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 5: Address="opc.tcp://192.168.0.123:12345/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 6: Address="opc.tcp://192.168.0.123:12345/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

Here the address part of the endpoint is always needed by the Client (via constructor or via
ServerAddress property). While the Client tries to find an endpoint with the Security-Mode “None” by
default, the policy of the endpoint has to be configured manually (OpcServer.Security.EndpointPolicies
property) when none exists.

Information about Certificates

Certificates in OPC UA
Certificates are used to ensure the authenticity and integrity of Client and Server applications.
Therefore they act as a kind of identity card for Client as well as Server application. This “identification
card” has to be stored somewhere as it exists as a form of file. The decision on where certificates are
stored is individual. On Windows, every certificate can be passed to the system and Windows takes care
of the Store. As an alternative custom Stores (= directories) can be set.

There are different types of Stores for certificates:

Store for application certificates
The Store also called Application Certificate Store exclusively contains certificates of those
applications that use this Store as an Application Certificate Store. Here a Client / Server application
saves its own certificate.

Client Development Introduction Copyright © by TIS

Client Development Introduction 4 / 104 2021/04/15 15:42

Store for certificates from trustworthy certificate issuers
The Store also called Trusted Issuer Certificate Store exclusively contains certificates from
certificate issuers that issue further certificates. Here a Client / Server application saves all
certificates from issuers whose certificates shall be treated as trusted by default.
Store for trustworthy certificates
The Store also called Trusted Peer Store exclusively contains certificates treated as trusted. Here
a Client saves the certificates from trusted Servers and a Server saves the certificates from
trusted Clients.
Store for rejected certificates
The Store also called Rejected Certificate Store exclusively contains certificates that are decreed
as not trusted. Here a Client saves the certificates from untrusted Servers and a Server saves
the certificates from untrusted Clients.

Regardless of the Store being located somewhere in the system or in the file system via a directory,
generally certificates in the Trusted Store are trusted and certificates in the Rejected Store are
untrusted. Certificates not belonging to either of the former are automatically saved in the Trusted Store,
if the certificate of the certificate issuer mentioned in the certificate is deposited in the Trusted Issuer
Store; otherwise it is automatically saved in the Rejected Store. Even if a trustworthy certificate has
expired or if its deposited information cannot be successfully verified through the certification center the
certificate is graded as not trustworthy and saved in the Rejected Store. During this process it also is
removed from the Trusted Peer Store. A certificate can also expire when it is listed in a CRL (=Certificate
Revocation List), which can be kept separately in the concerning store.

A certificate that the Client receives from the Server or the other way around is for the moment always
classified as unknown and therefore also treated as untrusted. In order for a certificate to be treated as
trusted it must be declared as such. This happens by saving the certificate of the Client in the Trusted
Store of the Server and the certificate of the Server in the Trusted Store of the Client.

Dealing with a Server certificate at the Client:

The Client establishes the certificate of the Server on whose endpoint it shall connect with.1.
The Client verifies the certificate of the Server.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Client establishes a connection to the server.3.

Dealing with a Client certificate at the Server:

The Server receives the Client's certificate from the Client while connecting.1.
The Server verifies the certificate of the Client.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Server allows the connection of the Client and operates it.3.

In case the verification of the certificate from the respective counterpart fails, the verification can be

Client Development Introduction Copyright © by TIS

Client Development Introduction 5 / 104 2021/04/15 15:42

extended by custom mechanisms and still decided on user scale, if the certificate gets accepted or not.

Types of Certificates
General: Self-Signed Certificates vs. Signed Certificates

A certificate is comparable to a document. A document can be issued by everybody and can also be signed
by everybody. However, the main difference here is, if the signee of a document really vouches for its
correctness (like a notary) or if the signee is the owner of the document itself. Especially documents of the
latter are not really inspiring confidence because no (legally) recognized instance as e.g. a notary vouches
for the owner of the document.

As certificates are comparable to documents and also have to show a (digital) signature, the situation here
is the same. The signature of a certificate has to tell the recipient of the certificate copy, who vouches for
this certificate. Herefore it always applies that the issuer of a certificate also signs it. When the issuer of a
certificate equals the subject of the certificate, you call this a self-signed certificate (subject equals
issuer). When the issuer of a certificate does not equal the subject of the certificate, you call this a
(simple / normal / signed) certificate (subject does not equal issuer).

As certificates are used especially in the context of the OPC UA authentication of an identity (of a certain
Client or Server application), signed certificates should be used as application certificates for the own
application. If, however, the issuer of the certificate also its owner, this self-signed certificate should only
be trusted when the owner is rated as trusted. Such certificates were, as described, signed by the issuer of
the certificate. Therefore, the issuer certificate has to be located in the Trusted Issuer Store of the
application. When the issuer certificate cannot be found there , the certificate chain is declared incomplete
and the certificate is not accepted by the counterpart. Yet, if the issuer certificate of the issuer of the
application certificate is not a self-signed certificate, the certificate of its issuer has to be available in the
Trusted Issuer Store.

User Identification
User Identification through Certificates

Next to the use of a certificate as an identification card for Client / Server applications, a certificate can
also be used to identify a user. A Client application is always operated by a certain user by whom it
operates with the Server. Depending on the Server configuration a Server can request additional
information about the identity of the Client's user from the Client. The user has the possibility to prove his
identity through a certificate. How thoroughly a Server is examining the certificate on validity, authenticity
and confidentiality depends on the Server. The Server provided by the Framework exclusively checks, if
the Thumbprint information of the user identity can be found in its ACL (=Access Control List) for
certificate-based user identities.

Aspects of Security

Productive use
The primary goal of the Framework is to make getting the grips of the OPC UA as easy as possible. This
basic thought sadly also leads to the fact that without secondary configuration of the Server a completely
save connection / communication between Client and Server does not occur. Yet, if the final Spike has

Client Development Introduction Copyright © by TIS

Client Development Introduction 6 / 104 2021/04/15 15:42

been implemented and tested, second thought should be given to the aspects of security.

Even if one is dependant on the security mechanisms provided by the Server while developing a Client,
one should always make the best choice possible. In general, the choice should always be the endpoint
(OpcClient.ServerAddress property and OpcClient.Security.EndpointPolicy property) that provides
the most secure connection (e.g. “https” instead of “http” as a scheme). This includes endpoints that
follow the best Security-Policy possible. Keep an eye on the Security-Mode and the Security-Algorithm.
According to the OPC Foundation, if you want to have the savest endpoint, refer to the endpoint with the
highest Security-Level (OpcClient.Security.UseHighLevelEndpoint property).

For simplified handling of certificates the Client accepts every certificate by default
(OpcClient.Security.AutoAcceptUntrustedCertificates property), also those it should deny under
productive conditions because only certificates known to the Client (located in the Trusted Peer Store)
apply as truly trusted. Apart from that the validity of a certificate should always be verified, including the
“expiration date” of the certificate, for example. Furthermore it is advisable to check the domains
referenced in the certificate (OpcClient.Security.VerifyServersCertificateDomains property). Other
properties of the certificate or looser rules for the validity and trustworthiness of a Server certificate can be
furthermore carried out manually (OpcClient.CertificateValidationFailed event).

If the Server uses a security process which controls the access via user identities, a concrete user identity
should always be chosen (OpcClient.Security.UserIdentity property). Apart from the fact that
anonymous identities almost always have only limited access, the Client can be granted access to more
sensitive data when a concrete identity (e.g. a certificate or a username-password pair) is used. At the
same time security is higher at e.g. a signed data transmission using a Certificate Identity.

Client Development Introduction Copyright © by TIS

Client Development Introduction 7 / 104 2021/04/15 15:42

Client Development Guide
The Client Frame

A Client for OPC UA
Add reference to the Opc.UaFx.Advanced Client Namespace:1.
using Opc.UaFx.Client;

Create an instance of the OpcClient class with the address of the Server:2.
var client = new OpcClient("opc.tcp://localhost:4840/");

Build a connection to the Server and start a session:3.
client.Connect();

Your code to interact with the Server:4.
// Your code to interact with the server.

Close all sessions before closing the application:5.
client.Disconnect();

Using the using block this looks as follows:6.
using (var client = new OpcClient("opc.tcp://localhost:4840/")) {
 client.Connect();
 // Your code to interact with the server.
}

Are the Nodes/NodeIds of the Server …7.
unkown: Find out which Nodes the Server have
known: Read Values of your Nodes or Write Values of your Nodes

A Client for OPC Classic
Add reference to the Opc.UaFx.Advanced Classic and Client Namespaces:1.
using Opc.UaFx.Client;
using Opc.UaFx.Client.Classic;

Create an instance of the OpcClient class with the address of the Server:2.
var client = new OpcClient("opc.com://localhost:48410/<progId>/<classId>");

Client Development Introduction Copyright © by TIS

Client Development Introduction 8 / 104 2021/04/15 15:42

Build a connection to the Server and start a session:3.
client.Connect();

Your code to interact with the Server:4.
// Your code to interact with the server.

Close all sessions before closing the application:5.
client.Disconnect();

Using the using block this looks as follows:6.
using (var client = new OpcClient("opc.com://localhost:48410/<progId>/<classId>")) {
 client.Connect();
 // Your code to interact with the server.
}

Are the Nodes/NodeIds of the Server …7.
unkown: Find out which Nodes the Server have
known: Read Values of your Nodes or Write Values of your Nodes

What describes the address of the server opc.com://localhost:48410/<progId>/<classId> ?

opc.com indicates that a connection to an OPC Classic Server is to be used.
localhost stands for the name or the IP address of the computer on which the OPC Classic Server is
running.
48410 the optional port number of the OPC UA Wrapper Server 1). If this is missing, a port number
will be generated based on the <classId>.
<progId> is a wildcard, replace it with the ProgID of the DCOM Application Information of the
OPC Classic Server,
e.g. 'OPCManager.DA.XML-DA.Server.DA'.
<classId> is a wildcard, replace it with the ClassId (also known as CLSID or AppID) of the DCOM
Application Information of the OPC Classic Server,
e.g. ' {E4EBF7FA-CCAC-4125-A611-EAC4981C00EA} '.

How can I determine the <classId> or <progId> of the server?

Method: OpcClassicDiscoveryClient1.

OpcClassicDiscoveryClient.cs
using (var discoveryClient = new OpcClassicDiscoveryClient("<host>")) {
 var servers = discoveryClient.DiscoverServers();

 foreach (var server in servers) {
 Console.WriteLine(
 "- {0}, ClassId={1}, ProgId={2}",
 server.Name,
 server.ClassId,
 server.ProgId);
 }
}

Method: Systeminformation2.
Perform the following steps on the OPC Classic Server computer:

Client Development Introduction Copyright © by TIS

Client Development Introduction 9 / 104 2021/04/15 15:42

AppID using the Component Services1.
Control Panel
Administrative Tools
Component Services
expand 'Component Services'
expand 'Computers'
expand 'My Computer'
expand 'DCOM Config'
select '<OPC Classic Server>'
open 'Properties'
first tab 'General'
copy the 'Application ID:' (= AppID)

ProgId using the System Registry2.
'Windows-Key' + 'R'
enter 'regedit'
click 'Run'
expand the key 'Computer'
then the key 'HKEY_LOCAL_MACHINE'
expand 'SOFTWARE'
expand 'SYSWOW6432Node' (only on 64 Bit Systems else continue)
expand 'Classes'
expand 'CLSID'
expand '<classId>'
select 'ProgID'
copy the '(Default)' value (= ProgID) in the 'Data' column

Values of Node(s)

Reading Values
The following types are used: OpcClient, OpcNodeId, OpcValue, OpcAttribute and OpcReadNode.

The OpcNodeId of a Node decides on which Node is to be read. When a Node value is read the current
value of the value attribute is read by default. The hereby determined OpcValue consists, additionally to
the actual value, of a time stamp at which the value was identified at the source of the value
(SourceTimestamp) and of a second time stamp at which the value was registered by the Server
(ServerTimestamp). If another attribute of the Node shall be read the according OpcAttribute has to be
mentioned at the call of ReadNode and the concerning OpcReadNode instance.

Read the value of the value attribute of a single Node:
OpcValue isRunning = client.ReadNode("ns=2;s=Machine/IsRunning");

Read the values of the value attibute of several Nodes:

Client Development Introduction Copyright © by TIS

Client Development Introduction 10 / 104 2021/04/15 15:42

OpcReadNode[] commands = new OpcReadNode[] {
 new OpcReadNode("ns=2;s=Machine/Job/Number"),
 new OpcReadNode("ns=2;s=Machine/Job/Name"),
 new OpcReadNode("ns=2;s=Machine/Job/Speed")
};

IEnumerable<OpcValue> job = client.ReadNodes(commands);

Read the value of the DisplayName attribute of a single Node:
OpcValue isRunningDisplayName = client.ReadNode("ns=2;s=Machine/IsRunning",
OpcAttribute.DisplayName);

Read the values of the DisplayName attribute of several Nodes:
OpcReadNode[] commands = new OpcReadNode[] {
 new OpcReadNode("ns=2;s=Machine/Job/Number", OpcAttribute.DisplayName),
 new OpcReadNode("ns=2;s=Machine/Job/Name", OpcAttribute.DisplayName),
 new OpcReadNode("ns=2;s=Machine/Job/Speed", OpcAttribute.DisplayName)
};

IEnumerable<OpcValue> jobDisplayNames = client.ReadNodes(commands);

Writing Values
The following types are used: OpcClient, OpcNodeId, OpcValue, OpcAttribute, OpcStatus,
OpcStatusCollection and OpcWriteNode.

The OpcNodeId of a Node decides which Node to write. When a Node value is written, the current value of
the value attribute is written by default. The hereby set OpcValue automatically receives the latest time
stamp as the time stamp of the source (SourceTimestamp). If another attribute of the Node shall be
written the according OpcAttribute has to be mentioned at the call of the WriteNode or at the
concerning OpcWriteNode instance.

Write the value of a single Node:
OpcStatus result = client.WriteNode("ns=2;s=Machine/Job/Cancel", true);

Write the values of several Nodes:
OpcWriteNode[] commands = new OpcWriteNode[] {
 new OpcWriteNode("ns=2;s=Machine/Job/Number", "0002"),
 new OpcWriteNode("ns=2;s=Machine/Job/Name", "MAN_F01_78910"),
 new OpcWriteNode("ns=2;s=Machine/Job/Speed", 1220.5)
};

OpcStatusCollection results = client.WriteNodes(commands);

Write the value of the DisplayName attribute of a single Node:
client.WriteNode("ns=2;s=Machine/IsRunning", OpcAttribute.DisplayName, "IsActive");

Write the values of the DisplayName attribute of several Nodes:

Client Development Introduction Copyright © by TIS

Client Development Introduction 11 / 104 2021/04/15 15:42

OpcWriteNode[] commands = new OpcWriteNode[] {
 new OpcWriteNode("ns=2;s=Machine/Job/Number", OpcAttribute.DisplayName, "Serial"),
 new OpcWriteNode("ns=2;s=Machine/Job/Name", OpcAttribute.DisplayName,
"Description"),
 new OpcWriteNode("ns=2;s=Machine/Job/Speed", OpcAttribute.DisplayName, "Rotations
per Second")
};

OpcStatusCollection results = client.WriteNodes(commands);

Processing Values
The following types are used here: OpcClient, OpcNodeId, OpcValue, OpcStatus and OpcStatusCollection.

The ReadNode methods always provide an OpcValue instance, while the ReadNodes methods provide a
list of OpcValue instances (one OpcValue per read Node). The actual value read is in the Value property
of the OpcValue instances. The result of the read request can be checked via the Status property. The
timestamp at which the read value has been detected at the sourcecan be retrieved via the
SourceTimestamp property. Correspondingly, the timestamp at which the read value was detected by the
Server can be retrieved via the ServerTimestamp property.

Read the value of a single Node:
OpcValue value = client.ReadNode("ns=2;s=Machine/Job/Speed");

Chech the result of the read request:
if (value.Status.IsGood) {
 // Your code to operate on the value.
}

Retrieve the scalar value of the OpcValue instance:
int intValue = (int)value.Value;

Retrieve the array value of the OpcValue instance:
int[] intValues = (int[])value.Value;

The WriteNode methods always provide an OpcStatus instance, while the WriteNodes methods provide
an OpcStatusCollection instance (that contains an OpcStatus for every written Node). The result of the
write request can thereby be checkt via the properties of the OpcStatus instance(s).

Write the scalar value of a single Node:
OpcStatus status = client.WriteNode("ns=2;s=Machine/Job/Speed", 1200);

Write the array value of a single Node:
int[] values = new int[3] { 1200, 1350, 1780 };
OpcStatus status = client.WriteNode("ns=2;s=Machine/Job/Speeds", values);

Check the result of a write request:
if (!status.IsGood) {
 // Your code to handle a failed write operation.
}

Client Development Introduction Copyright © by TIS

Client Development Introduction 12 / 104 2021/04/15 15:42

By using the individual steps to prepare the processing of scalar values and array values, the array value
of a Variable Node can be modified as follows:

using (var client = new OpcClient("opc.tcp://localhost:4840")) {
 client.Connect();
 OpcValue arrayValue = client.ReadNode("ns=2;s=Machine/Job/Speeds");

 if (arrayValue.Status.IsGood) {
 int[] intArrayValue = (int[])arrayValue.Value;

 intArrayValue[2] = 100;
 intArrayValue[4] = 200;
 intArrayValue[9] = 300;

 OpcStatus status = client.WriteNode("ns=2;s=Machine/Job/Speeds", intArrayValue);

 if (!status.IsGood)
 Console.WriteLine("Failed to write array value!");
 }
}

Browsing Nodes

Which Nodes does the Server have?
The following types are used here: OpcClient, OpcNodeId, OpcNodeInfo, OpcAttribute, OpcAttributeInfo and
OpcObjectTypes.

Starting from a Server whose Address-Space (all available nodes) are still (almost) unknown, it is advisable
to inspect the provided Nodes of the Server. Either a graphical OPC UA client like the OPC Watch can be
used or the Address-Space of the Server can be examined manually.

When using the class OpcObjectTypes already predefined Server-Nodes can also be examined by
browsing. The “root” of all Nodes of the Server represents the Default-Node called “ObjectsFolder”. When
browsing is started at the “ObjectsFolder”-Node, the entire Address-Space of the Server can be
determined:

var node = client.BrowseNode(OpcObjectTypes.ObjectsFolder);
Browse(node);
...
private void Browse(OpcNodeInfo node, int level =)
{
 Console.WriteLine("{0}{1}({2})",
 new string('.', level * 4),
 node.Attribute(OpcAttribute.DisplayName).Value,
 node.NodeId);

 level++;

 foreach (var childNode in node.Children())
 Browse(childNode, level);
}

The output via the code snippet shown contains, among other things (in parentheses) the Node-IDs of the

Client Development Introduction Copyright © by TIS

Client Development Introduction 13 / 104 2021/04/15 15:42

Nodes of the Server. Based on these NodeId's the Nodes of the Server can be addressed directly. Simply
pass the NodeId as a string (in double quotes) to the corresponding method of the OpcClient class. For
example, what it looks like when reading a node value is shown in the section Reading Values.

Inspecting Node by Node
The following types are used here: OpcClient, OpcNodeId, OpcNodeInfo, OpcAttribute, OpcAttributeInfo,
OpcMethodNodeInfo, OpcArgumentInfo and OpcObjectTypes.

Browsing in the OPC UA can be compared to .NET Reflections. Through browsing it is therefore possible to
dynamically determine and examine the entire “Address Space” of a Server. This includes all Nodes, their
references towards each other and their Node Types. Browsing is introduced through the OpcNodeId of
the Node on which the browsing procedure shall be started. Coming from the hereby retrieved
OpcNodeInfo, browsing can be continued on Child, Parent or Attribute Level.

If a Node is a method-depicting Node, then browsing provides an OpcMethodNodeInfo instance by the
help of which Input / Output arguments of the method can be examined.

Determine the OpcNodeInfo of the desired Node:1.
OpcNodeInfo machineNode = client.BrowseNode("ns=2;s=Machine");

Use the Child or Children method to browse the Child-Node:2.
OpcNodeInfo jobNode = machineNode.Child("Job");

foreach (var childNode in machineNode.Children()) {
 // Your code to operate on each child node.
}

Use the Attribute or Attributes method to browse the attributes:3.
OpcAttributeInfo displayName = machineNode.Attribute(OpcAttribute.DisplayName);

foreach (var attribute in machineNode.Attributes()) {
 // Your code to operate on each attribute.
}

In case a Node depicts a method, the Node can be visualized and examined like this:4.
if (childNode.Category == OpcNodeCategory.Method) {
 var methodNode = (OpcMethodNodeInfo)childNode;

 foreach (var argument in methodNode.GetInputArguments()) {
 // Your code to operate on each argument.
 }
}

High-Speed Browsing
The following types are used here: OpcNodeInfo OpcNodeId, OpcBrowseNode,
OpcReferenceTypeOpcBrowseNodeDegree and OpcBrowseOptions.

If a Server provides a very extensive “Address Space”, browsing through all nodes is often a bit slow,
especially if the large amount of node information also has to be transported via a quite weak hardware or
network configuration. The additional load on the Server also leads to a loss of performance if Clients go

Client Development Introduction Copyright © by TIS

Client Development Introduction 14 / 104 2021/04/15 15:42

through the entire node tree node by node.

To optimize this situation, the SDK offers the option of defining how many nodes and node levels should be
examined at the same time. The OpcBrowseNodeDegree enumeration is used for this. Depending on the
number of nodes required at the same time, the corresponding value of the enumeration is to be specified
via the Degree property or in the constructor of the OpcBrowseNode class. There exists also the option of
reducing the user data to a minimum or only to the really relevant data when browsing. The
OpcBrowseOptions enumeration offers various options for this. It should be noted that at least the
ReferenceTypeId must be part of the node information. If you want to receive additional node information,
such as the DisplayName, then the DisplayName must also be included (when using the Options property).

Browsing can be parameterized and thus further optimized using the following properties:

// Create a browse command to browse all hierarchical references.
var browse = new OpcBrowseNode(
 nodeId: OpcNodeId.Parse("ns=2;s=Machine"),
 degree: OpcBrowseNodeDegree.Generation);

// Create a browse command to browse specific types of references.
var browse = new OpcBrowseNode(
 nodeId: OpcNodeId.Parse("ns=2;s=Machine"),
 degree: OpcBrowseNodeDegree.Generation,
 referenceTypes: new[] {
 OpcReferenceType.Organizes,
 OpcReferenceType.HasComponent,
 OpcReferenceType.HasProperty
 });

// Reduce browsing to the smallest possible amount of data.
browse.Options = OpcBrowseOptions.IncludeReferenceTypeId
 | OpcBrowseOptions.IncludeBrowseName;

var node = client.BrowseNode(browse);

foreach (var childNode in node.Children()) {
 // Continue recursively...
}

It should also be noted that if nodes that only have a certain relationship to one another (which is
expressed using ReferenceTypes) are to be examined, browsing can also be further optimized here. The
node references relevant for browsing can also be used as parameters for the browse operation (see the
code snippet above) so that only the nodes that use one of the specified ReferenceTypes are visited.

High-Speed Browsing - Details
If a Server provides a very extensive “Address Space”, browsing through all nodes is often a bit slow,
especially if the large amount of node information also has to be transported via a quite weak hardware or
network configuration. The additional load on the Server also leads to a loss of performance if Clients go
through the entire node tree node by node.

In such cases it is important to keep the workload for the Server and the entire communication between
Client and Server as lean and as short as possible. For this purpose, OPC UA offers various mechanisms
with which a Client can signal to the Server that many more nodes than just one level are being examined.
The Server then has the option to prepare the information and communicate it to the Client in packets.
This therefore reduces further internal reprocessing of the node tree on the Server side, always on request

Client Development Introduction Copyright © by TIS

Client Development Introduction 15 / 104 2021/04/15 15:42

from the Client. In addition, a Client can, with the appropriate logic, query further nodes in advance from
the Server, of which it is known that their node information and that of their children and their children-
children (and so on) would also be processed.

The SDK offers various parameters for optimizing the browse operations, which can be used to
determine the behavior when browsing. Depending on the browsing process, the SDK uses the parameters
to decide which nodes with which information should be prepared in advance on the Server side for the
current browse process. The SDK then automatically retrieves these nodes during further browsing, stores
them in the memory in advance for the further browsing process and then delivers them from the internal
cache instead from the Server.

 A value of the OpcBrowseNodeDegree enumeration is used to control which
nodes are to be automatically requested by the Server at the same time.
The value Self corresponds to the standard behavior in which only the
children of the current node are examined. In the tree on the left, browsing
is started at node A1. As a result, the Server only delivers the nodes
directly below node A1, i.e. the nodes A1-B1 and A1-B2. The nodes of all
other subtrees, including those of the nodes next to the node A1, at which
the browse operation was started, are not part of the browse operation.

 With the value Sibling, all children of the sibling nodes are retrieved from
the Server at the same time when the child nodes of the current node are
examined. In this case, when the browse operation starts at node A1, the
SDK not only determines the direct child nodes of node A1, but also those
of all nodes that are siblings of A1. This means that the subtrees from A2 to
An are also determined during the browse operation. The SDK temporarily
stores the node information obtained in this way and (again) retrieves it
from the memory instead from the Server as soon as the developer
requires the subtree of e.g. Node A2. In the picture on the right you can see
that a browse operation - starting from node A1 - behaves as if you were
browsing nodes A1 to An at the same time.

Client Development Introduction Copyright © by TIS

Client Development Introduction 16 / 104 2021/04/15 15:42

 If the value Generation is used, all nodes of the same generation are
examined at the same time, which means that all nodes of the same level
depth are examined. Specifically, this means, as shown in the tree on the
left, that if a browse operation is started at the node A1-B1, not only its
subtree (as when browsing with OpcBrowseNodeDegree.Self), but also the
subtrees of his siblings (as when browsing with
OpcBrowseNodeDegree.Sibling) as well as the subtrees of his cousins of
the nth degree can also be called up. In this way, browsing behaves as if
you were browsing the nodes A1-B1, A1-B2, A2-B1 and A2-B2 at the same
time. Here, too, the node information of the subtrees is cached and made
available to the developer if required.

It should be noted that the use of the individual OpcBrowseNodeDegree values is always associated with a
little caution. If, for example, a Server provides a relatively “flat address space” that contains a large
number of nodes per subtree, the “Generation” option can lead to relatively long browse operations, which
in turn can be very memory-intensive. The same applies to the Self option, especially if one has a large
number of small subtrees on the same level, which in turn also contain many other child nodes.

The general recommendation is therefore that the developer either knows the complexity of the Server
in advance and selects the level of browse operations based on this, or in the case of unknown/changing
Servers by choosing the level Sibling or Generation the node information shall be reduced via the
Options property. Any further necessary node information can then be called up by the developer using a
separate browse operation.

Subscriptions

Subscription Creation
The following types are used here: OpcClient, OpcNodeId, OpcSubscribeDataChange, OpcSubscribeEvent,
OpcSubscription, OpcMonitoredItem, OpcMonitoredItemCollection, OpcDataChangeReceivedEventHandler,
OpcDataChangeReceivedEventArgs, OpcEventReceivedEventHandler, OpcEventReceivedEventArgs and
OpcNotification.

Subscriptions in the OPC UA can be compared to subscriptions to one or more journals in the bundle.
Instead of magazines, however, Node Events (= in the OPC UA: Monitored Item) or changes to the Node
Values (= in the OPC UA: Monitored Item) are subscribed. For each subscription, it is possible to specify in
which interval the notifications (OpcNotification instances) of the monitored items should be published
(OpcSubscription.PublishingInterval). Which Node to subscribe to is determined by the OpcNodeId of
the Node. By default, the Value-Attribute is monitored. If another attribute of the Node is to be monitored,
the corresponding OpcAttribute have to be specified when calling SubscribeDataChange or when using
a respective OpcSubscribeDataChange instance.

Subscribe to notifications about changes to the Node Value:

Client Development Introduction Copyright © by TIS

Client Development Introduction 17 / 104 2021/04/15 15:42

OpcSubscription subscription = client.SubscribeDataChange(
 "ns=2;s=Machine/IsRunning",
 HandleDataChanged);

Subscribe to notifications about changes to multiple Node Values:
OpcSubscribeDataChange[] commands = new OpcSubscribeDataChange[] {
 new OpcSubscribeDataChange("ns=2;s=Machine/IsRunning", HandleDataChanged),
 new OpcSubscribeDataChange("ns=2;s=Machine/Job/Speed", HandleDataChanged)
};

OpcSubscription subscription = client.SubscribeNodes(commands);

Handle notifications of changes to Node Values:
private static void HandleDataChanged(
 object sender,
 OpcDataChangeReceivedEventArgs e)
{
 // Your code to execute on each data change.
 // The 'sender' variable contains the OpcMonitoredItem with the NodeId.
 OpcMonitoredItem item = (OpcMonitoredItem)sender;

 Console.WriteLine(
 "Data Change from NodeId '{0}': {1}",
 item.NodeId,
 e.Item.Value);
}

Subscribe to notifications about Node Events:
OpcSubscription subscription = client.SubscribeEvent(
 "ns=2;s=Machine",
 HandleEvent);

Subscribe to notifications about Node Events of multiple Nodes:
OpcSubscribeEvent[] commands = new OpcSubscribeEvent[] {
 new OpcSubscribeEvent("ns=2;s=Machine", HandleEvent),
 new OpcSubscribeEvent("ns=2;s=Machine/Job", HandleEvent)
};

OpcSubscription subscription = client.SubscribeNodes(commands);

Handle notifications about Node Events:
private void HandleEvent(object sender, OpcEventReceivedEventArgs e)
{
 // Your code to execute on each event raise.
}

Configuration of the OpcSubscription:
subscription.PublishingInterval = 2000;

// Always call apply changes after modifying the subscription; otherwise
// the server will not know the new subscription configuration.
subscription.ApplyChanges();

Subscribe to notifications of changes to multiple Node Values through a single subscription and set
custom values of the Tag property of the OpcMonitoredItem:

Client Development Introduction Copyright © by TIS

Client Development Introduction 18 / 104 2021/04/15 15:42

string[] nodeIds = {
 "ns=2;s=Machine/IsRunning",
 "ns=2;s=Machine/Job/Speed",
 "ns=2;s=Machine/Diagnostics"
};

// Create an (empty) subscription to which we will addd OpcMonitoredItems.
OpcSubscription subscription = client.SubscribeNodes();

for (int index = ; index < nodeIds.Length; index++) {
 // Create an OpcMonitoredItem for the NodeId.
 var item = new OpcMonitoredItem(nodeIds[index], OpcAttribute.Value);
 item.DataChangeReceived += HandleDataChanged;

 // You can set your own values on the "Tag" property
 // that allows you to identify the source later.
 item.Tag = index;

 // Set a custom sampling interval on the
 // monitored item.
 item.SamplingInterval = 200;

 // Add the item to the subscription.
 subscription.AddMonitoredItem(item);
}

// After adding the items (or configuring the subscription), apply the changes.
subscription.ApplyChanges();

Handler:

private static void HandleDataChanged(
 object sender,
 OpcDataChangeReceivedEventArgs e)
{
 // The tag property contains the previously set value.
 OpcMonitoredItem item = (OpcMonitoredItem)sender;

 Console.WriteLine(
 "Data Change from Index {0}: {1}",
 item.Tag,
 e.Item.Value);
}

Subscription Filtering
The following types are used here: OpcClient, OpcNodeId, OpcSubscribeDataChange,
OpcDataChangeFilter, OpcDataChangeTrigger, OpcSubscription, OpcMonitoredItem,
OpcMonitoredItemCollection, OpcDataChangeReceivedEventHandler, OpcDataChangeReceivedEventArgs
and OpcNotification.

A Client application is notified through a once created subscription only about changes of the Status or of
the Value of a Node, by default. However, for a Server to notify the Client about changes to the Node
according to certain policies, it is possible to setup a trigger of a notification to evaluate. For this, the
desired Trigger is determined via a value of the OpcDataChangeTrigger enumeration. The following

Client Development Introduction Copyright © by TIS

Client Development Introduction 19 / 104 2021/04/15 15:42

examples subscribe to notifications about changes in the Status or the Value or the Timestamp of a Node.

Subscribe to notifications about changes to the Node Value and Node Timestamps:
OpcSubscription subscription = client.SubscribeDataChange(
 "ns=2;s=Machine/IsRunning",
 OpcDataChangeTrigger.StatusValueTimestamp,
 HandleDataChanged);

Subscribe to notifications about changes to multiple Node Values and Node Timestamps:
OpcSubscribeDataChange[] commands = new OpcSubscribeDataChange[] {
 new OpcSubscribeDataChange(
 "ns=2;s=Machine/IsRunning",
 OpcDataChangeTrigger.StatusValueTimestamp,
 HandleDataChanged),
 new OpcSubscribeDataChange(
 "ns=2;s=Machine/Job/Speed",
 OpcDataChangeTrigger.StatusValueTimestamp,
 HandleDataChanged)
};

OpcSubscription subscription = client.SubscribeNodes(commands);

Handle notifications of changes to Node Values and Node Timestamps:
private static void HandleDataChanged(
 object sender,
 OpcDataChangeReceivedEventArgs e)
{
 // Your code to execute on each data change.
 // The 'sender' variable contains the OpcMonitoredItem with the NodeId.
 OpcMonitoredItem item = (OpcMonitoredItem)sender;

 Console.WriteLine(
 "Data Change from NodeId '{0}': {1} at {2}",
 item.NodeId,
 e.Item.Value,
 e.Item.Value.SourceTimestamp);
}

The used OpcDataChangeTrigger-Value of the preceding samples can be defined using an instance of
the OpcDataChangeFilter class as well. Doing so enables the reuse of the once defined filter within
multiple subscriptions and monitored items:

Client Development Introduction Copyright © by TIS

Client Development Introduction 20 / 104 2021/04/15 15:42

OpcDataChangeFilter filter = new OpcDataChangeFilter();
filter.Trigger = OpcDataChangeTrigger.StatusValueTimestamp;

OpcSubscription subscriptionA = client.SubscribeDataChange(
 "ns=2;s=Machine/IsRunning",
 filter,
 HandleDataChanged);

// or

OpcSubscribeDataChange[] commands = new OpcSubscribeDataChange[] {
 new OpcSubscribeDataChange(
 "ns=2;s=Machine/IsRunning",
 filter,
 HandleDataChanged),
 new OpcSubscribeDataChange(
 "ns=2;s=Machine/Job/Speed",
 filter,
 HandleDataChanged)
};

OpcSubscription subscriptionB = client.SubscribeNodes(commands);

Structured Data
In the following sections it is assumed that the server provides a node (via the NodeId
“ns=2;s=Machine/Operator”), which makes use of the (fictitious) data type “StaffType” ,
Die Struktur des Datentypen wird dabei wie folgt definiert:

StaffType
 .Name : string
 .ID : long
 .Shift : ShiftInfoType
 .Name : string
 .Elapsed : DateTime
 .Remaining : int

Simplest Access
The following types are used here: OpcClient, OpcNodeId, OpcValue and OpcDataObject.

For easy access to values of variable nodes with structured data, the framework supports the use of the
keyword dynamic. Accesses to variables that are declared using dynamic are evaluated by .NET at
runtime. This means that the data of a structured data type can be accessed without prior explicit
implementation of a .NET type. Such an access could look like this:

Client Development Introduction Copyright © by TIS

Client Development Introduction 21 / 104 2021/04/15 15:42

client.UseDynamic = true;
client.Connect();

dynamic staff = client.ReadNode("ns=2;s=Machine/Operator").Value;

// Access the 'Name' and 'ID' field of the data without to declare the data type itself.
// Just use the field names known as they would be defined in a .NET Type.
Console.WriteLine("Name: {0}", staff.Name);
Console.WriteLine("Staff ID: {0}", staff.ID);

// Continue accessing subsequently used data types.
Console.WriteLine("Shift: {0}", staff.Shift.Name);
Console.WriteLine("- Time Elapsed: {0}", staff.Shift.Elapsed);
Console.WriteLine("- Jobs Remaining: {0}", staff.Shift.Remaining);

// Change Shift
staff.Name = "John";
staff.ID = 4242;
staff.Shift.Name = "Swing Shift";

client.WriteNode("ns=2;s=Machine/Operator", staff);

Name-based Access
The following types are used here: OpcClient, OpcNodeId, OpcValue, OpcDataObject and OpcDataField.

For name-based access to values of variable nodes with structured data, the OpcDataObject class can be
used directly. If the names of the fields of the data type are known, these can be accessed in the following
way:

client.UseDynamic = true;
client.Connect();

OpcDataObject staff = client.ReadNode("ns=2;s=Machine/Operator").As<OpcDataObject>();

// Access the 'Name' and 'ID' field of the data without to declare the data type itself.
// Just use the field names known as the 'key' to access the according field value.
Console.WriteLine("Name: {0}", staff["Name"].Value);
Console.WriteLine("Staff ID: {0}", staff["ID"].Value);

// Continue accessing subsequently used data types using the OpcDataObject as before.
OpcDataObject shift = (OpcDataObject)staff["Shift"].Value;

Console.WriteLine("Shift: {0}", shift["Name"].Value);
Console.WriteLine("- Time Elapsed: {0}", shift["Elapsed"].Value);
Console.WriteLine("- Jobs Remaining: {0}", shift["Remaining"].Value);

// Change Shift
staff["Name"].Value = "John";
staff["ID"].Value = 4242;
shift["Name"].Value = "Swing Shift";

client.WriteNode("ns=2;s=Machine/Operator", staff);

Client Development Introduction Copyright © by TIS

Client Development Introduction 22 / 104 2021/04/15 15:42

Dynamic Access
The following types are used here: OpcClient, OpcNodeSet, OpcAutomatism and OpcDataTypeSystem.

For the “simples access” (see Simplest Access) via dynamic (in Visual Basic not typed using Dim) as well as
the name-based access (see Name-based Access) the OpcClient needs information about the data types
provided by the server. This information determines the OpcClient class automatically during Connect()
from the server if the property UseDynamic either on the OpcClient or the static class OpcAutomatism
is set to the value true before connecting.

By enabling the feature, the OpcClient will load the necessary type information from the server so that it
can be accessed following the call to Connect() without explicit coding or shown in the previous sections.

If a UANodeSet.xml or a XML file with the description of the server is available (an XML file whose
content starts with UANodeSet), this file can also be loaded into the client application. The OpcClient can
then retrieve the information from the NodeSet and does not need to retrieve the type information when
connecting. This could then look like this:

using (OpcClient client = new OpcClient("opc.tcp://localhost:4840")) {
 client.NodeSet = OpcNodeSet.Load(@"..\Resources\MyServersNodeSet.xml");
 client.UseDynamic = true;

 client.Connect();
 dynamic staff = client.ReadNode("ns=2;s=Machine/Operator").Value;

 Console.WriteLine("Name: {0}", staff.Name);
 Console.WriteLine("Staff ID: {0}", staff.ID);
}

Note that the OpcClient class when calling GetDataTypeSystem() after setting a NodeSet provides an
instance of the OpcDataTypeSystem class that describes the type system described in the NodeSet. If,
on the other hand, no NodeSet is set using the NodeSet property of the OpcClient class, calling
GetDataTypeSystem() returns a OpcDataTypeSystem instance representing the server's type system
which was determined when calling Connect ().

Typed Access
The following types are used here: OpcClient, OpcNodeId, OpcDataTypeAttribute and
OpcDataTypeEncodingAttribute.

For typed access, .NET types are defined in the client application as they are defined in the server. All
required metadata is provided via attributes. Definition of .NET types for structured data types:

Client Development Introduction Copyright © by TIS

Client Development Introduction 23 / 104 2021/04/15 15:42

[OpcDataType("ns=2;s=StaffType")]
[OpcDataTypeEncoding("ns=2;s=StaffType-Binary")]
public class Staff
{
 public string Name { get; set; }
 public int ID { get; set; }
 public ShiftInfo Shift { get; set; }
}

[OpcDataType("ns=2;s=ShiftInfoType")]
[OpcDataTypeEncoding("ns=2;s=ShiftInfoType-Binary")]
public class ShiftInfo
{
 public string Name { get; set; }
 public DateTime Elapsed { get; set; }
 public byte Remaining { get; set; }
}

After the definition of the .NET type for a structured data type (on the client-side) defined by the server,
this can be used as follows:

client.Connect();
Staff staff = client.ReadNode("ns=2;s=Machine/Operator").As<Staff>();

// Access the 'Name' and 'ID' field of the data with the declared the data type.
Console.WriteLine("Name: {0}", staff.Name);
Console.WriteLine("Staff ID: {0}", staff.ID);

// Continue accessing subsequently used data types.
Console.WriteLine("Shift: {0}", staff.Shift.Name);
Console.WriteLine("- Time Elapsed: {0}", staff.Shift.Elapsed);
Console.WriteLine("- Jobs Remaining: {0}", staff.Shift.Remaining);

// Change Shift
staff.Name = "John";
staff.ID = 4242;
staff.Shift.Name = "Swing Shift";

client.WriteNode("ns=2;s=Machine/Operator", staff);

Generate Data Types
If the typed access (see Typed Access) is to be used, there is the option to generate either only certain or
all data types of an OPC UA server via the OPC Watch.

Generation using a Server

To generate a single data type implemented in .NET, perform the following steps:

Open OPC Watch1.
Create a new connection (+) and configure it (if necessary)2.
Connect to the server (plug icon)3.
Select a node…4.

either a variable-node with a structured data type as its value1.
or a DataType-node under /Types/DataTypes/BaseDataType/Structure or /Enumeration2.

Right click on this node5.

Client Development Introduction Copyright © by TIS

Client Development Introduction 24 / 104 2021/04/15 15:42

Click “Generate DataType”6.
Paste the code into the application, done!7.

All data types can be generated either in a code file (*.cs) or assembly file (*.dll). To do this, follow these
steps:

Open OPC Watch1.
Create a new connection (+) and configure it (if necessary)2.
Connect to the server (plug icon)3.
Select the Server-node “opc.tcp://…”4.
Right click on this node5.
Click “Generate Models”6.
Select the desired file type in the dialog7.
Click “Save”8.
Add the file to the project, done!9.

Generation using a NodeSet

Open OPC Watch1.
Click the first icon in the upper right corner of the application2.
Open the NodeSet file (usually a XML file of a Companion Specification)3.
NodeSet is loaded and then a “Save as …” dialog is displayed4.
Select the desired file type in the dialog5.
Click “Save”6.
Add the file to the project, done!7.

Define Data Types
The following types are used here: OpcClient, OpcNodeId, OpcData, OpcDataTypeAttribute,
OpcDataTypeEncodingAttribute, OpcDataTypeSystem and OpcDataTypeInfo.

As an alternative to generating the data type as a .NET code or .NET assembly (see Generate Data Types),
these can also be defined manually. To do this, implement the type as defined by the server. This means
that the .NET Type (regardless of structure or class) must provide the fields of the structured data type - in
terms of their type - in exactly the same order. All other metadata is provided via corresponding attributes:

[OpcDataType("<NodeId of DataType Node>")]
[OpcDataTypeEncoding(
 "<NodeId of Binary Encoding Node>",
 NamespaceUri = "<NamespaceUri.Value of binary Dictionary-Node>")]
internal struct MyDataType
{
 public short FieldA;
 public int FieldB;
 public string FieldC;
 ...
}

The information required for the definition can be obtained either via the OPC UA Server manual, the
responsible PLC developer or via the OpcClient class. To get the necessary information via the OpcClient
class, you can examine the variable node - which uses the structured data types - as follows:

Client Development Introduction Copyright © by TIS

Client Development Introduction 25 / 104 2021/04/15 15:42

OpcNodeInfo node = client.BrowseNode("ns=2;s=Machine/Operator");

if (node is OpcVariableNodeInfo variableNode) {
 OpcNodeId dataTypeId = variableNode.DataTypeId;
 OpcDataTypeInfo dataType = client.GetDataTypeSystem().GetType(dataTypeId);

 Console.WriteLine(dataType.TypeId);
 Console.WriteLine(dataType.Encoding);

 Console.WriteLine(dataType.Name);

 foreach (OpcDataFieldInfo field in dataType.GetFields())
 Console.WriteLine(".{0} : {1}", field.Name, field.FieldType);

 Console.WriteLine();
 Console.WriteLine("Data Type Attributes:");
 Console.WriteLine(
 "\t[OpcDataType(\"{0}\")]",
 dataType.TypeId.ToString(OpcNodeIdFormat.Foundation));
 Console.WriteLine(
 "\t[OpcDataTypeEncoding(\"{0}\", NamespaceUri = \"{1}\")]",
 dataType.Encoding.Id.ToString(OpcNodeIdFormat.Foundation),
 dataType.Encoding.Namespace.Value);
}

Data Types with optional Fields
The following types are used here: OpcClient, OpcNodeId, OpcData, OpcDataTypeAttribute,
OpcDataTypeEncodingAttribute, OpcDataTypeEncodingMaskAttribute and
OpcDataTypeMemberSwitchAttribute.

In order to reduce the amount of data transported, it is possible to “mark” certain fields of a structured
data type as existent or missing in the data stream depending on certain conditions or on the value of
another field within the data structure. Thus, to “mark” that a field is available, either the value of another
field or a single bit within the EncodingMask (a field coded as a preamble before the data in the stream) is
used. The size of the EncodingMask is specified in number of bytes in the
'OpcDataTypeEncodingMaskAttribute'; if the 'Size' property is not explicitly set, its value (if
'OpcEncodingMaskKind.Auto' is used) will be the smallest number of bytes needed (based on the number
of optional fields).

The following options are available for defining the optional fields:

Client Development Introduction Copyright © by TIS

Client Development Introduction 26 / 104 2021/04/15 15:42

[OpcDataType("<NodeId of DataType Node>")]
[OpcDataTypeEncoding(
 "<NodeId of Binary Encoding Node>",
 NamespaceUri = "<NamespaceUri.Value of binary Dictionary-Node>")]
[OpcDataTypeEncodingMask(OpcEncodingMaskKind.Auto)]
internal struct MyDataTypeWithOptionalFields
{
 public short FieldA;
 public int FieldB;
 public string FieldC;

 // Nullables are treat as optional fields by default.
 // Existence-Indicator-Bit is Bit0 in the encoding mask.
 public uint? OptionalField1;

 // Existence-Indicator-Bit is Bit1 (the next unused bit) in the encoding mask.
 [OpcDataTypeMemberSwitch]
 public int OptionalField2;

 // Existence-Indicator-Bit is Bit3 (bit 2 is unused) in the encoding mask.
 [OpcDataTypeMemberSwitch(bit: 3)]
 public byte OptionalField3;

 public bool FieldD;

 // 'OptionalField4' exists only if the value of 'FieldD' is equals 'true'.
 [OpcDataTypeMemberSwitch("FieldD")]
 public string OptionalField4;

 public int FieldE;

 // 'OptionalField5' exists only if the value of 'FieldE' is greater than '42'.
 [OpcDataTypeMemberSwitch("FieldE", value: 42, @operator:
OpcMemberSwitchOperator.GreaterThan)]
 public string OptionalField5;
}

Historical Data
The following types are used here: OpcClient, OpcNodeId, IOpcNodeHistoryNavigator, OpcHistoryValue and
OpcAggregateType.

According to OPC UA specification every Node of the category Variable supports the historical recording
of the values from its Value Attribute. Hereby the new value is saved together with the time stamp of the
Value Attribute at every change of value of the Value Attribute. These pairs consisting of value and
timestamp are called historical data. The Server itself decides on where to save the data. However, the
Client can detect via the IsHistorizing Attribute of the Node, if the Server provides historical data for a
Node and / or historically saves value changes. The OpcNodeId of the Node determines from which Node
the historical data shall be accessed. Hereby the Client can read, update, replace, delete and create
historical data. Mostly, historical data is read by the Client. Processing all historical values, independent
from reading with or without navigator, is not necessary.

In order to read historical data the Client can:

read all values within an open time frame (= non-defined StartTime or EndTime)

Client Development Introduction Copyright © by TIS

Client Development Introduction 27 / 104 2021/04/15 15:42

read all values from a particular timestamp forward (= StartTime):
var startTime = new DateTime(2017, 2, 16, 10, ,);
var history = client.ReadNodeHistory(
 startTime, null, "ns=2;s=Machine/Job/Speed");

read all values up until a particular timestamp (= EndTime):
var endTime = new DateTime(2017, 2, 16, 15, ,);
var history = client.ReadNodeHistory(
 null, endTime, "ns=2;s=Machine/Job/Speed");

read all values within a closed time window (= defined StartTime and EndTime):
var startTime = new DateTime(2017, 2, 16, 10, ,);
var endTime = new DateTime(2017, 2, 16, 15, ,);

var history = client.ReadNodeHistory(
 startTime, endTime, "ns=2;s=Machine/Job/Speed");

The values are being processed via an instance that implements the IEnumerable interface:
foreach (var value in history) {
 Console.WriteLine(
 "{0}: {1}",
 value.Timestamp,
 value);
}

In order to read historical data pagewise (= only a particular number of values is retrieved from the
Server) the Client can:

read a particular number of values per page:
var historyNavigator = client.ReadNodeHistory(
 10, "ns=2;s=Machine/Job/Speed");

read a particular number of values per page within an open time frame (= undefined StartTime
or EndTime)

read a particular number of values per page from a particular timestamp forward (=
StartTime):
var startTime = new DateTime(2017, 2, 16, 15, ,);
var historyNavigator = client.ReadNodeHistory(
 startTime, 10, "ns=2;s=Machine/Job/Speed");

read a particular number of values per page up until a particular timestamp (=
EndTime):
var endTime = new DateTime(2017, 2, 16, 15, ,);
var historyNavigator = client.ReadNodeHistory(
 null, endTime, 10, "ns=2;s=Machine/Job/Speed");

read a particular number of values per page within a closed time frame (= defined StartTime
and EndTime):

Client Development Introduction Copyright © by TIS

Client Development Introduction 28 / 104 2021/04/15 15:42

var startTime = new DateTime(2017, 2, 16, 10, ,);
var endTime = new DateTime(2017, 2, 16, 15, ,);

var historyNavigator = client.ReadNodeHistory(
 startTime, endTime, 10, "ns=2;s=Machine/Job/Speed");

The values are then processed via an instance that implements the IOpcNodeHistoryNavigator
interface:
do {
 foreach (var value in historyNavigator) {
 Console.WriteLine(
 "{0}: {1}",
 value.Timestamp,
 value);
 }
} while (historyNavigator.MoveNextPage());

historyNavigator.Close();

Always ensure that the Close method of the IOpcNodeHistoryNavigator instance is called. This is
necessary in order for the Server to be able to dispose of the historical data buffered for the request
afterwards. As an alternative to the explicit call of the Close method the navigator can also be used
in a using block:
using (historyNavigator) {
 do {
 foreach (var value in historyNavigator) {
 Console.WriteLine(
 "{0}: {1}",
 value.Timestamp,
 value);
 }
 } while (historyNavigator.MoveNextPage());
}

Different types of aggregation can be chosen for processed reading of the historical data via the
OpcAggregateType:

For reading the lowest value within a time frame:
var minSpeed = client.ReadNodeHistoryProcessed(
 startTime,
 endTime,
 OpcAggregateType.Minimum,
 "ns=2;s=Machine/Job/Speed");

For reading the average value within a time frame:
var avgSpeed = client.ReadNodeHistoryProcessed(
 startTime,
 endTime,
 OpcAggregateType.Average,
 "ns=2;s=Machine/Job/Speed");

For reading the highest value within a time frame:

Client Development Introduction Copyright © by TIS

Client Development Introduction 29 / 104 2021/04/15 15:42

var maxSpeed = client.ReadNodeHistoryProcessed(
 startTime,
 endTime,
 OpcAggregateType.Maximum,
 "ns=2;s=Machine/Job/Speed");

Nodes

Method Nodes
The following types are used here: OpcClient, OpcNodeId and OpcCallMethod.

The OpcNodeId of the Node determines which method Node is to be called. The hereby expected
parameters of a method can be provided via the parameters when calling CallMethod or by the according
OpcCallMethod instance. Note that first the OpcNodeId of the owner of the method has to be given and
then the OpcNodeId of the method itself. The OpcNodeId of the owner determines the identifier of the
object Node or the object type Node, that references the method as a HasComponent reference.

Call a single method Node without parameters (the method does not define any IN arguments):
// The result array contains the values of the OUT arguments offered by the method.
object[] result = client.CallMethod(
 "ns=2;s=Machine", /* NodeId of Owner Node */
 "ns=2;s=Machine/StartMachine" /* NodeId of Method Node*/);

Call a single method Node with parameters (the method defines some IN arguments):
// The result array contains the values of the OUT arguments offered by the method.
object[] result = client.CallMethod(
 "ns=2;s=Machine", /* NodeId of Owner Node */
 "ns=2;s=Machine/StopMachine", /* NodeId of Method Node */
 "Job Change", /* Parameter 1: 'reason' */
 10023, /* Parameter 2: 'reasonCode' */
 DateTime.Now /* Parameter 3: 'scheduleDate' */);

Call several method Nodes without parameters (the methods do not define any IN arguments):
OpcCallMethod[] commands = new OpcCallMethod[] {
 new OpcCallMethod("ns=2;s=Machine", "ns=2;s=Machine/StopMachine"),
 new OpcCallMethod("ns=2;s=Machine", "ns=2;s=Machine/ScheduleJob"),
 new OpcCallMethod("ns=2;s=Machine", "ns=2;s=Machine/StartMachine")
};

// The result array contains the values of the OUT arguments offered by the methods.
object[][] results = client.CallMethods(commands);

Call several method Nodes with parameters (the methods do define some IN arguments):

Client Development Introduction Copyright © by TIS

Client Development Introduction 30 / 104 2021/04/15 15:42

OpcCallMethod[] commands = new OpcCallMethod[] {
 new OpcCallMethod(
 "ns=2;s=Machine", /* NodeId of Owner Node */
 "ns=2;s=Machine/StopMachine", /* NodeId of Method Node */
 "Job Change", /* Parameter 1: 'reason' */
 10023, /* Parameter 2: 'reasonCode' */
 DateTime.Now /* Parameter 3: 'scheduleDate' */),
 new OpcCallMethod(
 "ns=2;s=Machine", /* NodeId of Owner Node */
 "ns=2;s=Machine/ScheduleJob", /* NodeId of Method Node */
 "MAN_F01_78910" /* Parameter 1: 'jobSerial' */),
 new OpcCallMethod(
 "ns=2;s=Machine", /* NodeId of Owner Node */
 "ns=2;s=Machine/StartMachine", /* NodeId of Method Node */
 10021 /* Parameter 1: 'reasonCode' */)
};

// The result array contains the values of the OUT arguments offered by the methods.
object[][] results = client.CallMethods(commands);

File Nodes
The following types are used here: OpcClient, OpcNodeId, OpcFile, OpcFileMode, OpcFileStream,
OpcFileInfo, OpcFileMethods and SafeOpcFileHandle.

Nodes of the type FileType define per definition of the OPC UA specification certain properties (= Property
Nodes) and methods (= Method Nodes) that allow access to a data stream as if your were accessing a file
in the file system. Hereby information about the content of the logical and physical file is provide
exclusively. According to the specification, a possibly existing path to the file is not provided. The access to
the file itself is realized via Open, Close, Read, Write, GetPosition and SetPosition. The data is always
processed in a binary way. Like on every other platform in the OPC UA you can choose a mode while
opening Open which sets the kind of data access planned. You can also request exclusive access to a file
in the OPC UA. After calling the Open method you recieve a numeric key for further file handle. This key
always has to be handed over at the methods Read, Write, GetPosition and SetPosition. An open file has to
be closed again when no longer needed.

Access to Nodes of the type FileType can be executed manually via the OpcClient by using the ReadNode
and CallMethod functions. As an alternative the Framework provides numerous other classes that -
modelled after the .NET Framework - allow access to Nodes of the type FileType. The OpcNodeId of the
Node determines which “File Node” shall be accessed.

Data access with the OpcFile class:

Reading the entire content of a text file:
string reportText = OpcFile.ReadAllText(client, "ns=2;s=Machine/Report");

Appending further text data to a text file:
OpcFile.AppendAllText(client, "ns=2;s=Machine/Report", "Lorem ipsum");

Opening and reading the file via OpcFileStream:

Client Development Introduction Copyright © by TIS

Client Development Introduction 31 / 104 2021/04/15 15:42

using (var stream = OpcFile.OpenRead(client, "ns=2;s=Machine/Report")) {
 var reader = new StreamReader(stream);

 while (!reader.EndOfStream)
 Console.WriteLine(reader.ReadLine());
}

Opening and writing the file via OpcFileStream:
using (var stream = OpcFile.OpenWrite(client, "ns=2;s=Machine/Report")) {
 var writer = new StreamWriter(stream);

 writer.WriteLine("Lorem ipsum");
 writer.WriteLine("dolor sit");
 // ...
}

Data access with the OpcFileInfo class:

Creating an OpcFileInfo instance:
var file = new OpcFileInfo(client, "ns=2;s=Machine/Report");

Working with the OpcFileInfo instance:
if (file.Exists) {
 Console.WriteLine($"File Length: {file.Lengh}");

 if (file.CanUserWrite) {
 using (var stream = file.OpenWrite()) {
 // Your code to write via stream.
 }
 }
 else {
 using (var stream = file.OpenRead()) {
 // Your code to read via stream.
 }
 }
}

Data access with the OpcFileMethods class:

via .NET SafeHandle concept (realized via the SafeOpcFileHandle class):
using (var handle = OpcFileMethods.SecureOpen(client, "ns=2;s=Machine/Report",
OpcFileMode.ReadWrite)) {
 byte[] data = OpcFileMethods.SecureRead(handle, 100);

 long position = OpcFileMethods.SecureGetPosition(handle);
 OpcFileMethods.SecureSetPosition(handle, position + data[data.Length - 1]);

 OpcFileMethods.SecureWrite(handle, new byte[] { 1, 2, 3 });
}

via numeric File Handle:

Client Development Introduction Copyright © by TIS

Client Development Introduction 32 / 104 2021/04/15 15:42

uint handle = OpcFileMethods.Open(client, "ns=2;s=Machine/Report",
OpcFileMode.ReadWrite);

try {
 byte[] data = OpcFileMethods.Read(client, "ns=2;s=Machine/Report", handle, 100);

 ulong position = OpcFileMethods.GetPosition(client, "ns=2;s=Machine/Report",
handle);
 OpcFileMethods.SetPosition(client, "ns=2;s=Machine/Report", handle, position +
data[data.Length - 1]);

 OpcFileMethods.Write(client, "ns=2;s=Machine/Report", handle, new byte[] { 1, 2, 3
});
}
finally {
 OpcFileMethods.Close(client, "ns=2;s=Machine/Report", handle);
}

Only file accesses via OpcFile, OpcFileInfo, OpcFileStream and SafeOpcFileHandle guarantee an also
implicit release of an open file, even if the call of the Close method has been “forgotten”. When closing the
connection to the Server, at the latest, all open files are closed by the OpcClient automatically. However,
this is not the case, if the methods of the class OpcFileMethods are used without the “Secure” prefix.

The OPC UA specification does not define a way to determine a Node as a Node of the type FileType and
therefore as a File-Node. For this the Framework offers the option to identify a File-Node via its Node
structure:

if (OpcFileMethods.IsFileNode(client, "ns=2;s=Machine/Report")) {
 // Your code to operate on the file node.
}

Datatype Nodes
The following types are used here: OpcClient, OpcNodeId, OpcNodeInfo and OpcTypeNodeInfo.

In case there a Server provides a Node, through that the Server publishes information about a Server
defined Datatype, it can be necessary that a Client wants to query such type information. The simplest
way to do so is Browsing. The framework provides especially for Datatype Nodes a specialisation of the
OpcNodeInfo - the OpcTypeNodeInfo. Using the properties of this class additional information can be
queried about the user defined Datatype. For example whether the Datatype is an enumeration. In this
case it is possible to query the different enum-entries as well. This works as follows:

var machineStatusNode = client.BrowseNode("ns=2;s=MachineStatus") as OpcTypeNodeInfo;

if (machineStatusNode != null && machineStatusNode.IsEnum) {
 var members = machineStatusNode.GetEnumMembers();

 foreach (var member in members)
 Console.WriteLine(member.Name);
}

Client Development Introduction Copyright © by TIS

Client Development Introduction 33 / 104 2021/04/15 15:42

Data Nodes
The following types are used here: OpcClient, OpcNodeId, OpcNodeInfo and OpcVariableNodeInfo.

Working with Data Nodes is primarily restricted to Reads and Writes regarding the Value-Attribut of the
Node. This works like on every other Node as already explained in “Reading Values of Node(s)” and
“Writing Values of Node(s)”. In case there additional information is required except of the value of the
Node (without the need to manually retrieve them using ReadNode requests), then they can be directly
and simple requested from the Server using Browsing. The following sample represents how this does
work:

var machineStatusNode = client.BrowseNode("ns=2;s=Machine/Status") as OpcVariableNodeInfo;

if (machineStatusNode != null) {
 Console.WriteLine($"AccessLevel: {machineStatusNode.AccessLevel}");
 Console.WriteLine($"UserAccessLevel: {machineStatusNode.UserAccessLevel}");
 ...
}

Furthermore it is possible to continue the Browsing on the Datatype Node used by the Data Node:

var dataTypeNode = machineStatusNode.DataType;

if (dataTypeNode.IsSystemType) {
 ...
}

Data-Item Nodes
The following types are used here: OpcClient und OpcNodeId.

Data-Item Nodes, provided by the OpcDataItemNode through a Server, are an extension of the simple
OpcDataVariableNode. They are also primarily used for value provision. Beyond from that they provide
additional useful Metadata. One of that additional information is published through the Definition property
which is defined as Property-Node which is in turn a child of the Data-Item Node. This property is used to
ensure the correct processing and interpreation of the data provided by the Node. The value of the
property is vendor specific and shall inform the user how the value is achieved. Apart from that it is also
possible to work with the Node as represented in “Reading Values of Node(s)” and “Writing Values of
Node(s)”.

Data-Item Nodes for analog Values
The following types are used here: OpcClient, OpcNodeId, OpcNodeInfo and OpcAnalogItemNodeInfo.

This kind of Node represents a specialisation of the Data-Item Node OpcDataItemNode. The values
provided are especially used in analog environments and can be described througth the additional
properties InstrumentRange, EngineeringUnit and EngineeringUnitRange. While the InstrumentRange
describes the value range of the analog data of its source, the EngineeringUnit defines the measure of the
provided values. Is the value determined under normal conditions, then it is within the customizable value
range defined by the EngineeringUnitRange property. The EngineeringUnit property described measure is
defined by the UNECE Recommendation N° 20. These recommendations are based on the International
System of Units (short SI Units). The OpcAnalogItemNodeInfo provides an appropriate interface for

Client Development Introduction Copyright © by TIS

Client Development Introduction 34 / 104 2021/04/15 15:42

simplified processing of the provided information of such a Node through Browsing:

var temperatureNode = client.BrowseNode("ns=2;s=Machine/Temperature") as
OpcAnalogItemNodeInfo;

if (temperatureNode != null) {
 Console.WriteLine($"InstrumentRange: {temperatureNode.InstrumentRange}");

 Console.WriteLine($"EngineeringUnit: {temperatureNode.EngineeringUnit}");
 Console.WriteLine($"EngineeringUnitRange: {temperatureNode.EngineeringUnitRange}");
}

Events

Event Subscription
The following types are used: OpcClient, OpcObjectTypes, OpcEventReceivedEventArgs, OpcEvent,
OpcAlarmCondition, OpcSimpleAttributeOperand, OpcFilter, OpcEventFilter und OpcEventSeverity.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Events inform a subscriber (such as Clients) about operations, conditions, and system-specific events.
Such information can be delivered to interested parties directly via global events. A global event is
always published through the Server's “Server” Node. For this reason, global events are also subscribed
via the Server Node as follows:

client.SubscribeEvent(OpcObjectTypes.Server, HandleGlobalEvents);

An event is generally handled with a method of the following signature:

private static void HandleGlobalEvents(
 object sender,
 OpcEventReceivedEventArgs e)
{
 Console.WriteLine(e.Event.Message);
}

The event data received via the OpcEventReceivedEventArgs instance can be retrieved via the Event
property. The property always returns an instance of the type OpcEvent. If the received event data is a
specialization of the OpcEvent class, it can be simply cast as follows:

private static void HandleGlobalEvents(_
 object sender, _
 OpcEventReceivedEventArgs e)
{
 var alarm = e.Event as OpcAlarmCondition;

 if (alarm != null)
 Console.WriteLine("Alarm: " + alarm.Message);
}

The call shown above subscribes to all events published globally by the Server. In order to restrict the
information received as well as the events which are ever sent from the Server to the Client, an event filter
can be defined and transmitted to the Server when a subscription is concluded:

Client Development Introduction Copyright © by TIS

Client Development Introduction 35 / 104 2021/04/15 15:42

// Define an attribute operand using the identifier of the type which defines the
// attribute / property including the name of the attribute / property to evaluate
// by the operand.
var severity = new OpcSimpleAttributeOperand(OpcEventTypes.Event, "Severity");
var conditionName = new OpcSimpleAttributeOperand(OpcEventTypes.Condition, "ConditionName");

var filter = OpcFilter.Using(client)
 .FromEvents(OpcEventTypes.AlarmCondition)
 .Where(severity > OpcEventSeverity.Medium & conditionName.Like("Temperature"))
 .Select();

client.SubscribeEvent(
 OpcObjectTypes.Server,
 filter,
 HandleGlobalEvents);

Creating an event filter always requires a OpcClient instance, which must already have a connection to
the destination Server. This is required because the Client collects the type information from the Server
relevant for the assembling of the filter when assembling. In the above example, all properties of the Node
type OpcAlarmConditionNode are recursively collected up to the OpcNode via the Client, and according
to the Where and Select clauses rules for the selection of the Event data are created. The Node types to be
analyzed can be passed with comma separated to the FromEvents(…)- method:

var severity = new OpcSimpleAttributeOperand(OpcEventTypes.Event, "Severity");
var conditionName = new OpcSimpleAttributeOperand(OpcEventTypes.Condition, "ConditionName");

var filter = OpcFilter.Using(client)
 .FromEvents(
 OpcEventTypes.AlarmCondition,
 OpcEventTypes.ExclusiveLimitAlarm,
 OpcEventTypes.DialogCondition)
 .Where(severity > OpcEventSeverity.Medium & conditionName.Like("Temperature"))
 .Select();

client.SubscribeEvent(
 OpcObjectTypes.Server,
 filter,
 HandleGlobalEvents);

The Where(…) method can then be used to restrict the information collected by FromEvents(…) about the
properties provided by the Node types. For this, the framework offers various operator overloads (<=, <,
>, >= and ==). For logical combinations of the operands it also offers the logical operators OR (|) and AND
(&). In addition, various methods are available for further restrictions, such as: Like, Between, InList, IsNull,
Not and OfType.

After the restriction has been made, you can use the Select(…) method to select the properties that will be
additionally selected by the Server when the event occurs (which corresponds to the conditions specified
under Where(…)) and are transferred to the Client.

Event Nodes
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcEvent und OpcSubscription.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Client Development Introduction Copyright © by TIS

Client Development Introduction 36 / 104 2021/04/15 15:42

It is not always appropriate for a Server to send events globally through the Server Node to all subscribers.
Often the context therefore plays a crucial role in whether an event is of interest to a subscriber. Event
Nodes are used to define local events. If the Server uses an Event Node to provide event data for a Node,
then the Event Node is a so-called “Notifier” of the Node. For this reason, it is also possible to recognize by
a HasNotifier reference which event Node reports event data to a Node. It should be noted that an Event
Node may be a “Notifier” for multiple Nodes. As a result, local events are always subscribed via the
notified Nodes:

client.SubscribeEvent(machineNodeId, HandleLocalEvents);

An event is generally handled with a method of the following signature. The further processing of the event
data is identical to the processing of global events (see section 'Working with Events').

private static void HandleLocalEvents(
 object sender,
 OpcEventReceivedEventArgs e)
{
 Console.WriteLine(e.Event.Message);
}

Of course, local events, as shown in the section 'Working with Events', can also be filtered.

Generally, after a subscriber (a Client) is only informed of events as long as he is in contact with the Server
and has initiated a subscription, a subscriber will not know what events have already occurred prior to
establishing a connection to the Server. If the Server is to inform subscribers of past events, subscribers
can request them from the Server as follows. In general, however, a Server is not obliged to provide
past events.

var subscription = client.SubscribeEvent(
 machineNodeId,
 HandleLocalEvents);

// Query most recent event information.
subscription.RefreshConditions();

Event Nodes with Conditions
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcEvent, OpcCondition und
OpcEventSeverity.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A specialization of the OpcEvent (featured in the 'Working with Events' section) is the OpcCondition
class. It serves to provide event data to which specific conditions are attached. Only in the case that a
condition awarded to an Event Node is true will such an event be triggered. The information of the event
includes information about the state of the condition as well as information related to the evaluation of the
condition. Since this information can vary in complexity depending on the scenario, the OpcCondition
represents the base class of all event data to which a condition is attached.

In addition to the general properties of an event (provided by the OpcEvent base class), one instance of
the OpcCondition provides information that may be of interest to the Client for further processing of the
event. This allows the Client to verify that, in general, the Server evaluates the event as relevant to a
Client (see IsRetained property). Similarly, the Client can evaluate the state of the condition, that is,
whether it is active or inactive (see IsEnabled property).

Client Development Introduction Copyright © by TIS

Client Development Introduction 37 / 104 2021/04/15 15:42

private static void HandleLocalEvents(
 object sender,
 OpcEventReceivedEventArgs e)
{
 var condition = e.Event as OpcCondition;

 if (condition.IsRetained) {
 Console.Write((condition.ClientUserId ?? "Comment") + ":");
 Console.WriteLine(condition.Comment);
 }
}

If the client does not want to further evaluate the condition, the client can deactivate it:

private static void HandleLocalEvents(object sender, OpcEventReceivedEventArgs e)
{
 var condition = e.Event as OpcCondition;

 if (condition.IsEnabled && condition.Severity < OpcEventSeverity.Medium)
 condition.Disable(client);
}

In addition, the client can also add a comment to the current state of the condition:

private static void HandleLocalEvents(object sender, OpcEventReceivedEventArgs e)
{
 var condition = e.Event as OpcCondition;

 if (condition != null)
 condition.AddComment(client, "Evaluated by me!");
}

Event Nodes with Dialog Conditions
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcCondition, OpcDialogCondition,
OpcEventSeverity und OpcDialogRequestedEventArgs.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A specialization of the OpcCondition is the OpcDialogCondition. The condition associated with this
event is a dialog with the subscribers. In this case, such a condition consists of a prompt, response options
and information as to which option should be selected by default (DefaultResponse property), which option
to confirm the dialog (OkResponse property) and which is used to cancel the dialog (CancelResponse
property). When such a dialog-driven event is triggered, the Server waits for one of the subscribers to
provide it with an answer in the form of the choice made based on the given answer options. The condition
for further processing, the operations linked to the dialog, is thus the answer to a task, a question, an
information or a warning. The information provided for this by the event can be processed as follows and
reported back to the Server:

Client Development Introduction Copyright © by TIS

Client Development Introduction 38 / 104 2021/04/15 15:42

private static void HandleLocalEvents(object sender, OpcEventReceivedEventArgs e)
{
 var condition = e.Event as OpcDialogCondition;

 if (condition != null && condition.IsActive) {
 Console.WriteLine(condition.Prompt);
 Console.WriteLine(" Options:");

 var responseOptions = condition.ResponseOptions;

 for (int index = ; index < responseOptions.Length; index++) {
 Console.Write($" [{index}] = {responseOptions[index].Value}");

 if (index == condition.DefaultResponse)
 Console.Write(" (default)");

 Console.WriteLine();
 }

 var respond = string.Empty;
 var respondOption = condition.DefaultResponse;

 do {
 Console.Write("Enter the number of the option and press Enter to respond: ");
 respond = Console.ReadLine();

 if (string.IsNullOrEmpty(respond))
 break;
 } while (!int.TryParse(respond, out respondOption));

 condition.Respond(client, respondOption);
 }
}

Apart from the standard event handling method, the OpcClient class also provides the DialogRequested
event. If OpcDialogCondition event data is received by the Client and not answered by any handler, the
Client executes the DialogRequested event to perform a dialog processing on it. This also simplifies the
handling of the event data somewhat, since these can be passed on typed to the event handler:

client.DialogRequested += HandleDialogRequested;
...

private static void HandleDialogRequested(
 object sender,
 OpcDialogRequestedEventArgs e)
{
 // Just use the default response, here.
 e.SelectedResponse = e.Dialog.DefaultResponse;
}

You just need to set the SelectedResponse property of the event arguments. Calling the Respond(…)
method of the OpcDialogCondition is done by the OpcClient after the execution of the event handler.

Event Nodes with Feedback Conditions
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcEvent, OpcCondition,

Client Development Introduction Copyright © by TIS

Client Development Introduction 39 / 104 2021/04/15 15:42

OpcAcknowledgeableCondition und OpcEventSeverity.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Based on OpcCondition events, the OpcAcknowledgeableCondition is a specialization used as the
base class for conditions with feedback requirements. Events of this type define that, when their condition
is met, a “report with acknowledgment of receipt” is issued. The “return receipt” - that is the feedback -
can be used to control further processes as well as to easily acknowledge hints and warnings. The
feedback mechanism provided for this purpose is divided into two stages. While the first stage is a kind of
“read receipt”, the second level is a kind of “read receipt with a nod”. OPC UA defines the read receipt as a
simple confirmation and the read receipt as a nod with acknowledgment. For both types of recognition, the
events provide corresponding Confirm and Acknowledge methods. By definition, the execution of the
“acknowledge” process should make an explicit execution of the “confirm” process unnecessary. On the
other hand, it is possible to first send a confirmation and then, separately, an acknowledgment. Regardless
of the order and the type of feedback, a comment from the operator can optionally be specified for the
confirm or acknowledge. An acknowledgment as feedback could be implemented as follows:

private static void HandleLocalEvents(object sender, OpcEventReceivedEventArgs e)
{
 var condition = e.Event as OpcAcknowledgeableCondition;

 if (condition != null && !condition.IsAcked) {
 Console.WriteLine($"Acknowledgment is required for condtion:
{condition.ConditionName}");
 Console.WriteLine($" -> {condition.Message}");
 Console.Write("Enter your acknowlegment comment and press Enter to acknowledge: ");

 var comment = Console.ReadLine();
 condition.Acknowledge(client, comment);
 }
}

In addition, when processing this type of event, you can check whether the event has already been
confirmed by Confirm (see IsConfirmed property) or by Acknowledge (see IsAcked property). It should be
noted that a Server must always define the interpretation itsefl as well as the logic following
the respective feedback. So whether a Server makes use of both feedback options or only one is left to
the respective developer. In the best case, a Server uses at least the Acknowledge method, as it is defined
by the specification as “stronger”.

Event Nodes with Alarm Conditions
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcAlarmCondition,
OpcAcknowledgeableCondition und OpcEventSeverity.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

The most important implementation of the OpcAcknowledgeableCondition in OPC UA is the
OpcAlarmCondition. With the help of OpcAlarmCondition events it is possible to define events whose
behavior is comparable to a bedside timer. Accordingly, such an event becomes active (see IsActive
property) if the condition associated with it is met. In the case of an alarm clock, for example, “reaching
the alarm time”. For example, an alarm that is set with a wake-up time but should not be activated when it
is reached is called a suppressed alarm (see IsSuppressed and IsSuppressedOrShelved property). But if an
alarm becomes active, it can be shelved (see IsSuppressedOrShelved property). An alarm can be reset
once (“One Shot Shelving”) or in time (“Timed Shelving”) (see Shelving Child Node). Alternatively, a reset

Client Development Introduction Copyright © by TIS

Client Development Introduction 40 / 104 2021/04/15 15:42

alarm can also be “unshelved” again (see Shelving Child Node).

private static void HandleLocalEvents(
 object sender,
 OpcEventReceivedEventArgs e)
{
 var alarm = e.Event as OpcAlarmCondition;

 if (alarm != null) {
 Console.Write($"Alarm {alarm.ConditionName} is");
 Console.WriteLine($"{(alarm.IsActive ? "active" : "inactive")}!");
 }
}

Event Nodes with discrete Alarm Conditions
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcDiscreteAlarm,
OpcOffNormalAlarm und OpcTripAlarm.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Based on the OpcAlarmCondition event data, there are several specializations that have been explicitly
defined for specific types of alarms to further specify the form, reason or content of an alarm by the nature
of the alarm. A subclass of such self-describing alarms are the discrete alarms. The basis for a discrete
alarm is the OpcDiscreteAlarm class. It defines an alarm state that is used to classify types into alarm
states, where the input for the alarm can only accept a certain number of possible values (e.g. true / false,
running / paused / terminated). If an alarm represents a discrete condition that is considered abnormal, the
OpcOffNormalAlarm or a subclass of it will be used. Starting from this alarm class, the framework offers
a further concretization with the OpcTripAlarm. The OpcTripAlarm becomes active when, for example,
an abnormal fault occurs on a monitored device, e.g. when the motor is shut down due to overload.

private static void HandleLocalEvents(object sender, OpcEventReceivedEventArgs e)
{
 var alarm = e.Event as OpcDiscreteAlarm;

 if (alarm != null) {
 if (alarm is OpcTripAlarm)
 Console.WriteLine("Trip Alarm!");
 else if (alarm is OpcOffNormalAlarm)
 Console.WriteLine("Off Normal Alarm!");
 }
}

Event Nodes with Alarm Conditions for Limits
The following types are used: OpcClient, OpcEventReceivedEventArgs und OpcLimitAlarm.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

If the Server checks process-specific limit values and then publishes the output of the check for limit value
overruns / underruns, then the OpcLimitAlarm class represents the central starting point for entering the
classes of limit alarms. Using this class limits are divided into up to four levels. To differentiate them, they
are called LowLow, Low, High and HighHigh (called in order of their metric order). By definition, the Server
does not need to define all limits.

Client Development Introduction Copyright © by TIS

Client Development Introduction 41 / 104 2021/04/15 15:42

private static void HandleLocalEvents(
 object sender,
 OpcEventReceivedEventArgs e)
{
 var alarm = e.Event as OpcLimitAlarm;

 if (alarm != null) {
 Console.Write(alarm.LowLowLimit);
 Console.Write(" ≤ ");
 Console.Write(alarm.LowLimit);
 Console.Write(" ≤ ");
 Console.Write(alarm.HighLimit);
 Console.Write(" ≤ ");
 Console.Write(alarm.HighHighLimit);
 }
}

Event Nodes with Alarm Conditions for exclusive Limits
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcLimitAlarm,
OpcExclusiveLimitAlarm, OpcExclusiveDeviationAlarm, OpcExclusiveLevelAlarm und
OpcExclusiveRateOfChangeAlarm.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A subclass of the OpcLimitAlarm events is the class OpcExclusiveLimitAlarm. As its name suggests, it
serves to define limit alerts for exclusive boundaries. Such a limit alarm uses values for the boundaries
that are mutually exclusive. This means that if a limit value has been exceeded / undershot, it is not
possible for another limit value to be exceeded or undershot at the same time.

There are three further specializations of the OpcExclusiveLimitAlarm within the OPC UA.

OpcExclusiveDeviationAlarm
This type of alarm is used when a slight deviation from defined limits is detected.

OpcExclusiveLevelAlarm
This type of alarm is used when a limit is exceeded. This typically affects an instrument - such as a
temperature sensor. This type of alarm becomes active when the observed value is above an upper limit or
below a lower limit.

OpcExclusiveRateOfChangeAlarm
This type of alarm is used to report an unusual change or missing change in a measured value with respect
to the rate at which the value has changed. The alarm becomes active if the rate at which the value
changes exceeds or falls below a defined limit.

Event Nodes with Alarm Conditions for non-exclusive
Limits
The following types are used: OpcClient, OpcEventReceivedEventArgs, OpcLimitAlarm,
OpcNonExclusiveLimitAlarm, OpcNonExclusiveDeviationAlarm, OpcNonExclusiveLevelAlarm und
OpcNonExclusiveRateOfChangeAlarm.

This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Client Development Introduction Copyright © by TIS

Client Development Introduction 42 / 104 2021/04/15 15:42

A subclass of the OpcLimitAlarm events is the class OpcNonExclusiveLimitAlarm. As its name
suggests, it serves to define limit alerts for non-exclusive boundaries. Such a limit alarm uses values for
the limits that are not mutually exclusive. This means that when a limit has been exceeded / undershot,
that at the same time another limit may be exceeded / undershot. The limits that are thereby violated can
be checked with the properties IsLowLow, IsLow, IsHigh and IsHighHigh of the event data.

There are three further specializations of the OpcNonExclusiveLimitAlarm within the OPC UA.

OpcNonExclusiveDeviationAlarm
This type of alarm is used when a slight deviation from defined limits is detected.

OpcNonExclusiveLevelAlarm
This type of alarm is used when a limit is exceeded. This typically affects an instrument - such as a
temperature sensor. This type of alarm becomes active when the observed value is above an upper limit or
below a lower limit.

OpcNonExclusiveRateOfChangeAlarm
This type of alarm is used to report an unusual change or missing change in a measured value with respect
to the rate at which the value has changed. The alarm becomes active if the rate at which the value
changes exceeds or falls below a defined limit.

Editing the Address Space

Adding Nodes
The following types are used: OpcClient, OpcAddNode, OpcAddNodeResult, OpcAddNodeResultCollection,
OpcAddDataItemNode, OpcAddAnalogItemNode, OpcAddObjectNode, OpcAddFolderNode,
OpcAddDataVariableNode and OpcAddPropertyNode.

While a Server provides a predefined set of “default nodes” to its Clients, the Clients can cause the Server
to provide additional nodes. This is done by using the “AddNodes” interface of the server. Starting from
the OpcAddNode class, the framework provides many further subclasses that can be used to create type-
specific nodes. A new folder node can thus be created in the following way:

OpcAddNodeResult result = client.AddNode(new OpcAddFolderNode(
 name: "Jobs",
 nodeId: OpcNodeId.Null,
 parentNodeId: "ns=2;s=Machine"));

The parameters used provide the necessary minimum of information required. The first parameter “name”
is used for the Name property, the DisplayName property, the SymbolicName property, and the
Description property of the Node. The second parameter “nodeId” tells the Server which identifier is to be
used for the node. In case there the identifier is already used in the address space of the Nodes of the
Server for another Node, the Node is not created and the Client receives the result code
“BadNodeIdRejected”. If OpcNodeId.Null is used instead, as shown in the example, the server will
automatically create and assign a new identifier for the Node. The parameter “parentNodeId” finally
defines the identifier of the parent Node under which the new Node is to be created in the tree.

Calling the AddNode method returns an instance of the OpcAddNodeResult class. In addition to the
information about the result of the operation, it also provides the identifier that was finally used for the
new Node:

Client Development Introduction Copyright © by TIS

Client Development Introduction 43 / 104 2021/04/15 15:42

if (result.IsGood)
 Console.WriteLine($"NodeId of 'Jobs': {result.NodeId}");
else
 Console.WriteLine($"Failed to add node: {result.Description}");

Besides the possibility to add a single Node, several Nodes can be added simultaneously:

OpcNodeId jobsNodeId = result.NodeId;

OpcAddNodeResultCollection results = client.AddNodes(
 new OpcAddDataVariableNode<string>("CurrentJob", jobsNodeId),
 new OpcAddDataVariableNode<string>("NextJob", jobsNodeId),
 new OpcAddDataVariableNode<int>("NumberOfJobs", jobsNodeId));

Calling the AddNodes method returns an instance of the OpcAddNodeResultCollection class. Which
contains OpcAddNodeResult instances that can be evaluated and processed in the same way as described
above.

In addition to the possibility of adding one or more Nodes at the same time, it is possible to pass entire
trees of Nodes to the methods AddNode and AddNodes:

Client Development Introduction Copyright © by TIS

Client Development Introduction 44 / 104 2021/04/15 15:42

OpcAddNodeResultCollection results = client.AddNodes(
 new OpcAddObjectNode(
 "JOB001",
 nodeId: OpcNodeId.Null,
 parentNodeId: jobsNodeId,
 new OpcAddDataVariableNode<sbyte>("Status", -1),
 new OpcAddDataVariableNode<string>("Serial", "J01-DX-11.001"),
 new OpcAddAnalogItemNode<float>("Speed", 1200f) {
 EngineeringUnit = new OpcEngineeringUnitInfo(5067859, "m/s", "metre per
second"),
 EngineeringUnitRange = new OpcValueRange(5400,),
 Definition = "DB100.DBW 0"
 },
 new OpcAddObjectNode(
 "Setup",
 new OpcAddPropertyNode<bool>("UseCutter"),
 new OpcAddPropertyNode<bool>("UseDrill")),
 new OpcAddObjectNode(
 "Schedule",
 new OpcAddPropertyNode<DateTime>("EarliestStartTime"),
 new OpcAddPropertyNode<DateTime>("LatestStartTime"),
 new OpcAddPropertyNode<TimeSpan>("EstimatedRunTime"))),
 new OpcAddObjectNode(
 "JOB002",
 nodeId: OpcNodeId.Null,
 parentNodeId: jobsNodeId,
 new OpcAddDataVariableNode<sbyte>("Status", -1),
 new OpcAddDataVariableNode<string>("Serial", "J01-DX-53.002"),
 new OpcAddAnalogItemNode<float>("Speed", 3210f) {
 EngineeringUnit = new OpcEngineeringUnitInfo(5067859, "m/s", "metre per
second"),
 EngineeringUnitRange = new OpcValueRange(5400,),
 Definition = "DB200.DBW 0"
 },
 new OpcAddObjectNode(
 "Setup",
 new OpcAddPropertyNode<bool>("UseCutter"),
 new OpcAddPropertyNode<bool>("UseDrill")),
 new OpcAddObjectNode(
 "Schedule",
 new OpcAddPropertyNode<DateTime>("EarliestStartTime"),
 new OpcAddPropertyNode<DateTime>("LatestStartTime"),
 new OpcAddPropertyNode<TimeSpan>("EstimatedRunTime"))));

Such a tree can also be constructed using the corresponding properties:

Client Development Introduction Copyright © by TIS

Client Development Introduction 45 / 104 2021/04/15 15:42

var jobsNodeId = result.NodeId;

var job = new OpcAddObjectNode(
 name: "JOB003",
 nodeId: OpcNodeId.Null,
 parentNodeId: jobsNodeId);

job.Children.Add(new OpcAddDataVariableNode<sbyte>("Status", -1));
job.Children.Add(new OpcAddDataVariableNode<string>("Serial", "J01-DX-78.003"));
job.Children.Add(new OpcAddAnalogItemNode<float>("Speed", 1200f) {
 EngineeringUnit = new OpcEngineeringUnitInfo(5067859, "m/s", "metre per second"),
 EngineeringUnitRange = new OpcValueRange(5400,),
 Definition = "DB100.DBW 0"
});

var setup = new OpcAddObjectNode("Setup");
setup.Children.Add(new OpcAddPropertyNode<bool>("UseCutter"));
setup.Children.Add(new OpcAddPropertyNode<bool>("UseDrill"));

job.Children.Add(setup);

var schedule = new OpcAddObjectNode("Schedule");
schedule.Children.Add(new OpcAddPropertyNode<DateTime>("EarliestStartTime"));
schedule.Children.Add(new OpcAddPropertyNode<DateTime>("LatestStartTime"));
schedule.Children.Add(new OpcAddPropertyNode<TimeSpan>("EstimatedRunTime"));

job.Children.Add(schedule);

OpcAddNodeResult result = client.AddNode(job);

In case there other type definitions shall be used for the Nodes than those provided by the corresponding
subclasses of OpcAddNode, then it is possible to create object and variable Nodes based on their type
definition:

client.AddObjectNode(OpcObjectType.DeviceFailureEventType, "FailureInfo");
client.AddVariableNode(OpcVariableType.XYArrayItem, "Coordinates");

Unlike adding nodes based on Foundation-defined type definitions, it is also possible to add nodes based
on the identifier of their type definition. For this, the type to be used must be declared in advance via an
object or variable-specific type definition. This can then be used again and again to add corresponding
nodes:

Client Development Introduction Copyright © by TIS

Client Development Introduction 46 / 104 2021/04/15 15:42

// Declare Job Type
var jobType = OpcAddObjectNode.OfType(OpcNodeId.Of("ns=2;s=Types/JobType"));

client.AddNodes(
 jobType.Create("JOB001", nodeId: OpcNodeId.Null, parentNodeId: jobsNodeId),
 jobType.Create("JOB002", nodeId: OpcNodeId.Null, parentNodeId: jobsNodeId),
 jobType.Create("JOB003", nodeId: OpcNodeId.Null, parentNodeId: jobsNodeId),
 jobType.Create("JOB004", nodeId: OpcNodeId.Null, parentNodeId: jobsNodeId));

var scheduleNodeId = OpcNodeId.Parse("ns=2;s=Machine/JOB002/Schedule");

// Declare Shift Time Type
var shiftTimeType = OpcAddVariableNode.OfType(OpcNodeId.Of("ns=2;s=Types/ShiftTimeType"));

OpcAddNodeResult result = client.AddNode(new OpcAddObjectNode(
 "ShiftPlanning",
 nodeId: OpcNodeId.Null,
 parentNodeId: scheduleNodeId,
 shiftTimeType.Create("Early"),
 shiftTimeType.Create("Noon"),
 shiftTimeType.Create("Late")));

Deleting Nodes
The following types are used: OpcClient, OpcDeleteNode, OpcStatus and OpcStatusCollection.

Server-provided and client-added nodes can be deleted using the Server's “DeleteNodes” interface. This
requires primarily the identifier of the node to be deleted:

OpcStatus result = client.DeleteNode("ns=2;s=Machine/Jobs");

The possibility shown in the above example uses an instance of the OpcDeleteNode class for deletion,
which by default also includes the deletion of all references pointing to the Node. However, if the
references to the Node are to be retained, the parameter “includeTargetReferences” have to be set to the
value “false”:

OpcStatus result = client.DeleteNode(
 "ns=2;s=Machine/Jobs",
 includeTargetReferences: false);

Besides the possibility to delete a single Node, several Nodes can be deleted at the same time:

OpcStatusCollection results = client.DeleteNodes(
 new OpcDeleteNode("ns=2;s=Machine/Jobs/JOB001"),
 new OpcDeleteNode("ns=2;s=Machine/Jobs/JOB002"),
 new OpcDeleteNode("ns=2;s=Machine/Jobs/JOB003"));

Adding References
The following types are used: OpcClient, OpcAddReference, OpcStatus and OpcStatusCollection.

Nodes that already exist in the address space of a Server can have different relationships to one another.
These relationships are described by so-called references in the address space of the Server. While nodes
are physically placed in the role of the parent or child Node, there may be more logical relationships

Client Development Introduction Copyright © by TIS

Client Development Introduction 47 / 104 2021/04/15 15:42

between them. These relationships thus serve to define more precisely the function and dependencies of
the Nodes with each other. In addition, such trees can be used to define additional trees in the address
space of the Server without having to reorganize existing nodes.

To add a reference, the Client uses the Server's “AddReferences” interface as follows:

client.AddReference(
 "ns=2;s=Machines/MAC01",
 targetNodeId: "ns=2;s=Plant",
 targetNodeCategory: OpcNodeCategory.Object);

The example shown adds a relationship starting from the Node with the identifier “ns=2;s=Plant” to the
Node “ns=2;s=Machines/MAC01” of the type “Organizes”.

The statement shown corresponds 1:1 to the result of the following example:

client.AddReference(
 "ns=2;s=Machines/MAC01",
 targetNodeId: "ns=2;s=Plant",
 targetNodeCategory: OpcNodeCategory.Object,
 direction: OpcReferenceDirection.ParentToChild,
 referenceType: OpcReferenceType.Organizes);

While the first identifier always indicates the source Node, the parameter “targetNodeId” specifies the
identifier of the destination Node. The additional parameter “targetNodeCategory” must correspond to the
Category property (= NodeClass according to Foundation) of the destination Node, because this ensures
that the Server knows that the desired destination Node is sufficiently known.

In addition to the possibility to add a single reference, several references can be added simultaneously:

client.AddReferences(
 new OpcAddReference("ns=2;s=Machines/MAC01", "ns=2;s=Plant01",
OpcNodeCategory.Object),
 new OpcAddReference("ns=2;s=Machines/MAC02", "ns=2;s=Plant01",
OpcNodeCategory.Object),
 new OpcAddReference("ns=2;s=Machines/MAC03", "ns=2;s=Plant02",
OpcNodeCategory.Object));

The example above organizes three nodes each representing one machine for itself below the “Machines”
Node below the “Plant01” and the “Plant02” Nodes. The “Organizes” relationship used here by default
means that the nodes are still available below the “Machines” Node, but also below the “Plant01” Node,
the Nodes “MAC01” and “MAC02”, as well as the Node “MAC03” below the Node “Plant02”.

Deleting References
The following types are used: OpcClient, OpcDeleteReference, OpcStatus and OpcStatusCollection.

Already existing references between the Nodes in the address space of the Server can be deleted via the
“DeleteReferences” interface of the Server:

client.DeleteReference(
 nodeId: "ns=2;s=Machines/MAC03",
 targetNodeId: "ns=2;s=Plant");

In this case, the example shown deletes all “Organizes” references in the direction of the Node with the
identifier “ns=2;s=Machines/MAC03” as well as in the direction of the Node with the identifier

Client Development Introduction Copyright © by TIS

Client Development Introduction 48 / 104 2021/04/15 15:42

“ns=2;s=Plant” between the both Nodes exist.

If, on the other hand, you want to delete only “Organizes” references from the source to the destination
Node in one specific direction, you can do this as follows:

client.DeleteReference(
 nodeId: "ns=2;s=Machines/MAC03",
 targetNodeId: "ns=2;s=Plant",
 direction: OpcReferenceDirection.ChildToParent);

If, on the other hand, you want to delete references that are not of the “Organizes” type, they can be
specified using the additional “referenceType” or “referenceTypeId” parameter as follows:

client.DeleteReference(
 nodeId: "ns=2;s=Machines/MAC03",
 targetNodeId: "ns=2;s=Plant",
 direction: OpcReferenceDirection.ChildToParent,
 referenceType: OpcReferenceType.HierarchicalReferences);

In addition to the possibility to delete individual references, several references can be deleted at the same
time:

client.DeleteReferences(
 new OpcDeleteReference("ns=2;s=Machines/MAC01", "ns=2;s=Plant01"),
 new OpcDeleteReference("ns=2;s=Machines/MAC02", "ns=2;s=Plant01"),
 new OpcDeleteReference("ns=2;s=Machines/MAC03", "ns=2;s=Plant02"));

Client Configuration

General Configuration
The following types are used here: OpcClient, OpcCertificateStores und OpcCertificateStoreInfo.

In all code snippets depicted here the Client is always configured via the Code (if the default configuration
of the Client is not applied). The OpcClient instance is the certral port for configuring the Client
application, the session parameter and the connection parameter. All settings concerning security can be
found as an instance of the OpcClientSecurity class via the Security property of the Client. All settings
concerning the Certificate Store can be found as an instance of the OpcCertificateStores class via the
CertificateStores property of the Client.

If the Client shall also be configurable via XML, the configuration of the Client can be loaded either from a
specific or a random XML file. The necessary steps are described in the section “Preparing the Client
Configuration via XML”.

As soon as the according preparations for configuring the Client configuration via XML have been made,
the settings can be loaded as follows:

Loading the configuration file via the App.config
client.Configuration =
OpcApplicationConfiguration.LoadClientConfig("Opc.UaFx.Client");

Loading the configuration file via the path to the XML file

Client Development Introduction Copyright © by TIS

Client Development Introduction 49 / 104 2021/04/15 15:42

client.Configuration =
OpcApplicationConfiguration.LoadClientConfigFile("MyClientAppNameConfig.xml");

Amongst others, the following options are provided for configuring the Client application:

Configuring the application
via Code:
// Default: Value of AssemblyTitleAttribute of entry assembly.
client.ApplicationName = "MyClientAppName";

// Default: A null reference to auto complete on connect to "urn::" +
ApplicationName
client.ApplicationUri = "http://my.clientapp.uri/";

via XML (underneath the OpcApplicationConfiguration element):
 <ApplicationName>MyClient Configured via XML</ApplicationName>
 <ApplicationUri>http://myclient/application</ApplicationUri>

Configuring the session parameters
via Code:
client.SessionTimeout = 30000; // Default: 60000
client.SessionName = "My Session Name"; // Default: null

via XML (underneath the OpcApplicationConfiguration element):
 <DefaultSessionTimeout>600000</DefaultSessionTimeout>

Configuring the connection parameters
via Code:
client.OperationTimeout = 10000; // Default: 60000
client.DisconnectTimeout = 5000; // Default: 10000
client.ReconnectTimeout = 5000; // Default: 10000

via XML (underneath the OpcApplicationConfiguration element):
 <OperationTimeout>120000</OperationTimeout>

Configuring the Certificate Store
via Code:
// Default: ".\CertificateStores\Trusted"
client.CertificateStores.ApplicationStore.Path
 = @"%LocalApplicationData%\MyClientAppName\App Certificates";

// Default: ".\CertificateStores\Rejected"
client.CertificateStores.RejectedStore.Path
 = @"%LocalApplicationData%\MyClientAppName\Rejected Certificates";

// Default: ".\CertificateStores\Trusted"
client.CertificateStores.TrustedIssuerStore.Path
 = @"%LocalApplicationData%\MyClientAppName\Trusted Issuer Certificates";

// Default: ".\CertificateStores\Trusted"
client.CertificateStores.TrustedPeerStore.Path
 = @"%LocalApplicationData%\MyClientAppName\Trusted Peer Certificates";

via XML (underneath the OpcApplicationConfiguration element):

Client Development Introduction Copyright © by TIS

Client Development Introduction 50 / 104 2021/04/15 15:42

 <SecurityConfiguration>
 <ApplicationCertificate>
 <StoreType>Directory</StoreType>
 <StorePath>.\CertificateStores\App</StorePath>
 <SubjectName>CN=MyClient, C=US, S=Arizona, O=YourCompany,
DC=localhost</SubjectName>
 <!-- <Thumbprint>3a35fb798fc6dee8a7e7e4652b0e28fc14c6ee0f</Thumbprint> -->
 </ApplicationCertificate>

 <TrustedIssuerCertificates>
 <StoreType>Directory</StoreType>
 <StorePath>.\CertificateStores\Trusted</StorePath>
 </TrustedIssuerCertificates>

 <TrustedPeerCertificates>
 <StoreType>Directory</StoreType>
 <StorePath>.\CertificateStores\Trusted</StorePath>
 </TrustedPeerCertificates>

 <NonceLength>32</NonceLength>

 <RejectedCertificateStore>
 <StoreType>Directory</StoreType>
 <StorePath>.\CertificateStores\Rejected</StorePath>
 </RejectedCertificateStore>
 </SecurityConfiguration>

Certificate Configuration
The following types are used here: OpcClient, OpcCertificateManager, OpcClientSecurity,
OpcCertificateStores and OpcCertificateStoreInfo.

Certificates of the type .der, .pem, .pfx and .p12 are recommended. If the Client shall use a secure Server
endpoint (where the OpcSecurityMode equals Sign or SignAndEncrypt), the certificate has to have a
private key.

An existing certificate is loaded from any path:1.
var certificate = OpcCertificateManager.LoadCertificate("MyClientCertificate.pfx");

A new certificate is generated (in memory):2.
var certificate = OpcCertificateManager.CreateCertificate(client);

Save a certificate in any path:3.
OpcCertificateManager.SaveCertificate("MyClientCertificate.pfx", certificate);

Set the Client certificate:4.
client.Certificate = certificate;

The certificate has to be stored in the Application Store:5.
if (!client.CertificateStores.ApplicationStore.Contains(certificate))
 client.CertificateStores.ApplicationStore.Add(certificate);

If no or an invalid certificate is used, a new certificate is generated / used by default. If the Client6.

Client Development Introduction Copyright © by TIS

Client Development Introduction 51 / 104 2021/04/15 15:42

shall only use the mentioned certificate this function has to be deactivated. For deactivating the
function set the property AutoCreateCertificate to the value false:
client.CertificateStores.AutoCreateCertificate = false;

User Identity Configuration
The following types are used here: OpcClient, OpcUserIdentity, OpcClientIdentity, OpcCertificateIdentity,
OpcClientSecurity, OpcCertificateStores and OpcCertificateStoreInfo.

If a Server is expecting additional information about the user identity other than the Client certificate, the
user has to be set via the UserIdentity property. You can choose between identities based on username-
password and a certificate. If the Server supports an anonymized user identity, no special identity has to
be set.

Setting a user identity consisting of username-password:
client.Security.UserIdentity = new OpcClientIdentity("userName", "password");

Setting a user identity via certificate (with private key):
client.Security.UserIdentity = new OpcCertificateIdentity(new
X509Certificate2("Doe.pfx"));

Setting an anonymous user identity (pre-configured by default):
client.Security.UserIdentity = null;

Server Endpoint Configuration
The following types are used here: OpcClient, OpcClientSecurity, OpcSecurityPolicy, OpcSecurityMode,
OpcSecurityAlgorithm and OpcDiscoveryClient.

By default the Client chooses the Server endpoint with the simplest security configuraton. Hereby it
chooses an endpoint with the OpcSecurityMode of None, Sign or SignAndEncrypt. According to the OPC
Foundation the level of a policy of an endpoint serves as a relative measure for security mechanisms used
by the endpoint. Per definition an endpoint with a higher level is more secure than an endpoint with a
lower level. By default the Client ignores the Policy-Level of the endpoints.

If the Client shall exclusively consider secure endpoints, the UseOnlySecureEndpoints property1.
has to be set to the value true:
client.Security.UseOnlySecureEndpoints = true;

If the Client shall choose an endpoint defining the highest Policy-Level, the UseHighLevelEndpoint2.
property has to be set to the value true:
client.Security.UseHighLevelEndpoint = true;

If the Client shall choose an endpoint with the best security configuration, the EndpointPolicy3.
property has to be set as follows:
client.Security.EndpointPolicy = new OpcSecurityPolicy(
 OpcSecurityMode.None, OpcSecurityAlgorithm.Basic256);

To examine the endpoints provided by the Server use the OpcDiscoveryClient:4.

Client Development Introduction Copyright © by TIS

Client Development Introduction 52 / 104 2021/04/15 15:42

using (var client = new OpcDiscoveryClient("opc.tcp://localhost:4840/")) {
 var endpoints = client.DiscoverEndpoints();

 foreach (var endpoint in endpoints) {
 // Your code to operate on each endpoint.
 }
}

Further Security Settings
The following types are used here: OpcClient, OpcClientSecurity, OpcCertificateValidationFailedEventArgs,
OpcCertificateStores and OpcCertificateStoreInfo.

A Server sends its certificate to the Client for authentication whilst connecting. Using the Server certificate,
the Client can decide if to establish a connection to this Server and therefore trust it.

For additional checking of the domains deposited in the Server certificate the property
VerifyServersCertificateDomains can be used (deactivated by default):
client.Security.VerifyServersCertificateDomains = true;

If the Client shall accept only trustworthy certificates, the default acceptance of all certificates has
to be deactivated as follows:
client.Security.AutoAcceptUntrustedCertificates = false;

As soon as the default acceptance of all certificates has been deactivated, a custom checking of
certificates should be considered:
client.CertificateValidationFailed += HandleCertificateValidationFailed;
...
private void HandleCertificateValidationFailed(
 object sender,
 OpcCertificateValidationFailedEventArgs e)
{
 if (e.Certificate.SerialNumber == "...")
 e.Accept = true;
}

If the Server certificate is categorized as untrusted it can be manually declared trusted. Therefore
it has to be saved in the TrustedPeerStore:
// In context of the event handler the sender is an OpcClient.
var client = (OpcClient)sender;

if (!client.CertificateStores.TrustedPeerStore.Contains(e.Certificate))
 client.CertificateStores.TrustedPeerStore.Add(e.Certificate);

Configuration via XML
If the Client shall also be configurable via XML, the configuration of the Client can be directly loaded either
from a specific or from a random XML file.

Using a certain XML file it has to show the following default XML tree:

Client Development Introduction Copyright © by TIS

Client Development Introduction 53 / 104 2021/04/15 15:42

<?xml version="1.0" encoding="utf-8" ?>
<OpcApplicationConfiguration
 xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ua="http://opcfoundation.org/UA/2008/02/Types.xsd"
 schemaLocation="AppConfig.xsd">

In case that a random XML file shall be used for the configuration, a .config file has to be created that
refers to the XML file the configuration of the Client shall be loaded from. The following section shows
which entries the .config file therefore has to contain and which structure the XML file has to show.

Creating and preparing the App.config of the application:

Add an App.config (if not already existing) to the project1.
Insert the following configSections element underneath the configuration element:2.
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>
 <section name="Opc.UaFx.Client"
 type="Opc.Ua.ApplicationConfigurationSection,
 Opc.UaFx.Advanced,
 Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=0220af0d33d50236" />
 </configSections>

Also insert the following Opc.UaFx.Client element underneath the configuration element:3.
 <Opc.UaFx.Client>
 <ConfigurationLocation xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd">
 <FilePath>ClientConfig.xml</FilePath>
 </ConfigurationLocation>
 </Opc.UaFx.Client>

The value of the FilePath element can show towards a random file path where the XML configuration4.
file to be used can be found. The value depicted here would refer to a configuration file lying next to
the application.
Save the changes to the App.config5.

Creating and preparing the XML configuration file:

Create an XML file with the file name used in the App.config and save the used path.1.
Insert the following default XML tree for XML configuration files:2.
<?xml version="1.0" encoding="utf-8" ?>
<OpcApplicationConfiguration
 xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ua="http://opcfoundation.org/UA/2008/02/Types.xsd"
 schemaLocation="AppConfig.xsd">

Save the changes to the XML file.3.

Client Development Introduction Copyright © by TIS

Client Development Introduction 54 / 104 2021/04/15 15:42

Client Application Delivery
This is how you prepare your OPC UA Client application for the use in productive environments.

Application certificates - Using a concrete certificate
For productive use don't use a certificate automatically generated by the Framework.

If you already have an appropriate certificate for your application you can load your PFX-based certificate
from any random Store and assign it to the Client instance via the OpcCertificateManager:

var certificate = OpcCertificateManager.LoadCertificate("MyClientCertificate.pfx");
client.Certificate = certificate;

Note that the application name has to be included in the certificate as “Common Name” (CN) and has to
match with the value of the AssemblyTitle attribute:

[assembly: AssemblyTitle("<Common Name (CN) in Certificate>")]

If that isn't the case you have to set the name used in the certificate via the ApplicationName property
of the Client instance. If the “Domain Component” (DC) part is used in the certificate the value of the
ApplicationUri property of the application has to show the same value:

client.ApplicationName = "<Common Name (CN) in Certificate>";
client.ApplicationUri = new Uri("<Domain Component (DC) in Certificate>");

If you don't already have an appropriate certificate you can use as an application certificate for your Client
you should at least create and use a self-signed certificate via the Certificate Generator of the OPC
Foundation. The Certificate Generator (Opc.Ua.CertificateGenerator.exe) included in the SDK of the
Framework is opened as follows:

Opc.Ua.CertificateGenerator.exe -sp . -an MyClientAppName

The first parameter (-sp) sets saving the certificate in the current directory. The second parameter (-an)
sets the name of the Client application using the application certificate. Replace “MyClientAppName” by
the name of your Client application. Note that the Framework for chosing the application certificate
uses the value of the AssemblyTitle attribute and therefore the same value as stated in this
attribute is used for “MyClientAppName”. In alternative to the value in the AssemblyTitle attribute
the value used in the application certificate can be set via the ApplicationName property of the Client
instance:

client.ApplicationName = "MyDifferentClientAppName";

It is important that either the value of the AssemblyTitle attribute or the value of the ApplicationName
property equals the value of the second parameter (-an). If you want to set further properties of the
certificate as, for example, the validity in months (default 60 months) or the name of the company or the
names of the domains the Client will be working on, call the generator with the parameter “/?” in order to
receive a list of all further / possible parameter values:

Opc.Ua.CertificateGenerator.exe /?

After the Certificate Generator was opened with the corresponding parameters, the folders “certs” and
“private” are in the current directory. Without changing the names of the folders and the files, copy both
folders in the directory that you set as Store for the application certificates. By default that is the folder
“Trusted” in the folder “CertificateStores” next to the application.

Client Development Introduction Copyright © by TIS

Client Development Introduction 55 / 104 2021/04/15 15:42

If you have set the parameter “ApplicationUri” (-au) you have to set the same value on the
ApplicationUri property of the Client instance:

client.ApplicationUri = new Uri("<ApplicationUri>");

Configuration Surroundings - All files necessary for an XML-based configuration

If the application shall be configurable through a random XML file referenced in the App.config, App.config
has to be in the same directory as the application and hold the name of the application as a prefix:

<MyClientAppName>.exe.config

If the application is configured through a (certain) XML file, ensure that the file is accessible for the
application.

Licensing
The OPC UA SDK comes with an evaluation license which can be used unlimited for each
application run for 30 minutes. If this restriction limits your evaluation options, you can request
another evaluation license from us.

After receiving your personalized license key for OPC UA Client development it has to be committed
to the framework. Hereto insert the following code line into your application before accessing the
OpcClient class for the first time. Replace <insert your license code here> with the license key you
received from us.

Opc.UaFx.Client.Licenser.LicenseKey = "<insert your license code here>";

If you purchased a bundle license key for OPC UA Client and Server development from us, it has to
be committed to the framework as follows:

Opc.UaFx.Licenser.LicenseKey = "<insert your license code here>";

Additionally you receive information about the license currently used by the framework via the LicenseInfo
property of the Opc.UaFx.Client.Licenser class for Client licenses and via the Opc.UaFx.Licenser
class for bundle licenses. This works as follows:

ILicenseInfo license = Opc.UaFx.Client.Licenser.LicenseInfo;

if (license.IsExpired)
 Console.WriteLine("The OPA UA SDK license is expired!");

Note that a once set bundle license becomes ineffective by additionally committing a Client
license key!

In the course of development/evaluation, it is mostly irrelevant whether the test license or the license
already purchased is being used. However, as soon as the application goes into productive use, it is
annoying if the application stops working during execution due to an invalid license. For this reason, we
recommend implementing the following code snippet in the Client application and at least executing it
when the application is started:

Client Development Introduction Copyright © by TIS

Client Development Introduction 56 / 104 2021/04/15 15:42

#if DEBUG
 Opc.UaFx.Client.Licenser.FailIfUnlicensed();
#else
 Opc.UaFx.Client.Licenser.ThrowIfUnlicensed();
#endif

1) The OPC UA Wrapper Server is automatically started by the OPC UA Client or reused if it already exists.
The OPC UA Wrapper Server 'wraps' the accesses of the OPC UA Client and sends them to the OPC Classic
Server the answers received from the OPC Classic Server are sent to the OPC UA Wrapper Server as OPC
UA responses to OPC UA Client back again.

Client Development Introduction Copyright © by TIS

Client Development Introduction 57 / 104 2021/04/15 15:42

Server Development Introduction
The Server

Start
This is happening on calling 'Start':

Checking, if an address was set (Address Property).1.
The Server changes its status (OpcServer.State property) to the value Starting.2.
The Server checks its configuration for validity and conclusiveness.3.
Next the Server tries to create a host for every endpoint description.4.
What follows is the start of all Managers (NodeManager, SessionManager, …)5.
Finally, every created host responsible for the endpoint-specific communication with the Client6.
gets started.
The Server changes its status (OpcServer.State property) to the value Started.7.

Stop
This is happening on calling 'Stop':

The Server changes its status (OpcServer.State property) to the value Stopping.1.
Closing all Managers (NodeManager, SessionManager, …)2.
The Server releases all gathered resources.3.
Closing the hosts of endpoint descriptions.4.
The Server changes its status (OpcServer.State property) to the value Stopped.5.

Parameters
In order for the Server to be able to give the Clients access to its OPC UA Services, the right parameters
have to be determined. In general the server address (OpcServer.Address property) is needed. The
Uri instance (= Uniform Resource Identifier) supplies all Clients the primarily necessary information via the
server. For example, the server address “opc.tcp://192.168.0.80:4840” contains the information of the
concept “opc.tcp” (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”), which determines via
which protocol the data shall be exchanged. Generally, “opc.tcp” is advisable for OPC UA Servers in a local
network. Servers out of the local network should use “http”, even better “https”. Furthermore the address
defines that the server is carried out on the computer with the IP address “192.168.0.80” and listens to
requests via the port with the number “4840” (which is default for OPC UA, customized port numbers are
also possible). Instead of the static IP address the DNS name of the computer can also be used, so instead
of “127.0.0.1” you could also use “localhost”.

Client Development Introduction Copyright © by TIS

Client Development Introduction 58 / 104 2021/04/15 15:42

If the server shall provide no endpoint for data exchange with savety mode “None” (also additionally
possible are “Sign” and “SignAndEncrypt”) as its policy, at least one Endpoint-Policy has to be
manually configured (OpcServer.Security.EndpointPolicies property). If, however, an endpoint with
the Property “None” is supplied by the Server, a Client can select this one automatically for an easy and
quick connection. When a policy level (a number) is assigned according to the OPC Foundation to the
separate Endpoint Policies during the definition of the endpoints, Clients can handle those appropriately.
Here the OPC intends that the higher the level of the Policy of an endpoint, the “better” that endpoint
(note that this is merely a neither watched nor imposed guideline).

If the Server shall use an access control, for example via an ACL (= Access Control List), the user
data has to be determined for identification of possible / valid identities of users of the Server
(this also works in a running system). Here it is possible to determine the identities of users through a
username-password pair (OpcServerIdentity class) or through a certificate (OpcCertificateIdentity
class). Those identities have then to be communicated to the Server
(OpcServer.Security.UserNameAcl/CertificateAcl property). Those access control lists have to be
activated in order for the server to recognize them
(OpcServer.Security.UserNameAcl/CertificateAcl.IsEnabled property).

Endpoints
Endpoints result from the crossing of the used Base-Addresses of the Server and the security strategies
supported by the Server. The results are the Base-Addresses of every scheme-port pair supported, while
several schemes (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) can be determined for
data exchange on different ports. The hereby linked policies determine the procedure during the data
exchange. Consisting of the Policy Level, the Security-Mode and the Security-Algorithm, every policy
determines the kind of secure data exchange.

For example, when two Security-Policies are followed, they can be defined as follows:

Security-Policy A: Level=0, Security-Mode=None, Security-Algorithm=None
Security-Policy B: Level=1, Security-Mode=Sign, Security-Algorithm=Basic256

When furthermore, for example, three Base-Addresses are combined for different schemes as follows:

Base-Address A: "https://mydomain.com/"
Base-Address B: "opc.tcp://192.168.0.123:4840/"
Base-Address C: "opc.tcp://192.168.0.123:12345/"

The results will be the following endpoint descriptions through the crossing:

Endpoint 1: Address="https://mydomain.com/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 2: Address="https://mydomain.com/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 3: Address="opc.tcp://192.168.0.123:4840/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 4: Address="opc.tcp://192.168.0.123:4840/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 5: Address="opc.tcp://192.168.0.123:12345/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 6: Address="opc.tcp://192.168.0.123:12345/", Level=1, Security-Mode=Sign, Security-

Client Development Introduction Copyright © by TIS

Client Development Introduction 59 / 104 2021/04/15 15:42

Algorithm=Basic256

Here the address part of the endpoint is always determined by the Server (via constructor or via Address
property). While the Server defines an endpoint with the Security-Mode “None” by default, the policy of the
endpoint has to be configured manually (OpcServer.Security.EndpointPolicies property) when none of
this kind or additional ones shall be used.

Information about Certificates

Certificates in OPC UA
Certificates are used to ensure the authenticity and integrity of Client and Server applications.
Therefore they act as a kind of identity card for Client as well as Server application. This “identification
card” has to be stored somewhere as it exists as a form or data. The decision on where certificates are
stored is individual.

There are different types of Stores for certificates:

Store for user certificates
The Store also called Application Certificate Store exclusively contains certificates of those
applications that use this Store as an Application Certificate Store. Here a Client / Server application
saves its own certificate.
Store for certificates from trustworthy certificate issuers
The Store also called Trusted Issuer Certificate Store exclusively contains certificates from
certificate issuers that issues further certificates. Here a Client / Server application saves all
certificates from issuers whose certificates shall be treated as trusted by default.
Store for trustworthy certificates
The Store also called Trusted Peer Store exclusively contains certificates treated as trusted. Here
a Client saves the certificates from trusted Servers and a Server saves the certificates from
trusted Clients.
Store for rejected certificates
The Store also called Rejected Certificate Store exclusively contains certificates that are decreed
as not trusted. Here a Client saves the certificates from not trusted Servers and a Server saves
the certificates from not trusted Clients.

Regardless of the Store being located somewhere in the system or in the data system via a list, generally
certificates in the Trusted Store are trusted and certificates in the Rejected Store are untrusted.
Certificates not belonging to eeither of the former are automatically saved in the Trusted Store, if the
certificate of the certificate issuer mentioned in the certificate is deposited in the Trusted Issuer Store;
otherwise it is automatically saved in the Rejected Store. Even if a trustworthy certificate has expired or if
its deposited information cannot be successfully verified through the certification center the certificate is
graded as not trustworthy and saved in the Rejected Store. During this process it also is removed from the
Trusted Peer Store. A certificate can also expire when it is listed in a CRL (=Certificate Revocation List),
which can be kept separately in the concerning store.

A certificate that the Client receives from the Server or the other way around is for the moment always
classified as unknown and therefore also treated as untrusted. In order for a certificate to be treated as
trusted it must be declared as such. This happens by saving the certificate of the Client in the Trusted
Store of the Server and the certificate of the Server in the Trusted Store of the Client.

Client Development Introduction Copyright © by TIS

Client Development Introduction 60 / 104 2021/04/15 15:42

Dealing with a Server certificate at the Client:

The Client establishes the certificate on the Server on whose Endpoint it shall connect with.1.
The Client verifies the certificate of the Server.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Client establishes a connection to the server.3.

Dealing with a Client certificate at the Server:

The Server receives the Client's certificate from the Client while connecting.1.
The Server verifies the certificate of the Client.2.

Is the certificate valid?1.
Has the effective date expired?1.
Is the issuer's certificate valid?2.

Does the certificate exist in the Trusted Peer Store?2.
Is it listed in a CRL?1.

Does the certificate exist in the Rejected Store?3.
When the certificate is trusted, the Server allows the connection of the Client and operates it.3.

In case the verification of the certificate fails at the respective counterpart the verification can be
extended by custom mechamisms and still decided on user scale, if the certificate gets accepted or not.

Types of Certificates
General: Self-Signed Certificates vs. Signed Certificates

A certificate is comparable to a document. A document can be issued by everybody and can also be signed
by everybody. However, the main difference here is, if the signee of a document really vouches for its
correctness (like a notary) or if the signee is the owner of the document itself. Especially documents of the
latter are not really inspiring confidence because no (legally) recognized instance as e.g. a notary vouches
for the owner of the document.

As certificates are comparable to documents and also have to show a (digital) signature, the situation here
is the same. The signature of a certificate has to tell the recipient of the certificate copy, who vouches for
this certificate. Herefore it always applies that the issuer of a certificate also signs it. When the issuer of a
certificate equals the subject of the certificate, you call this a self-signed certificate (subject equals
issuer). When the issuer of a certificate does not equal the subject of the certificate, you call this a
(simple / normal / signed) certificate (subject does not equal issuer).

As certificates are used especially in the context of the OPC UA authentication of an identity (of a certain
Client or Server application), signed certificates should be used as application certificates for the own
application. If, however, the issuer of the certificate also its owner, this self-signed certificate should only
be trusted when the owner is rated as trusted. Such certificates were, as described, signed by the issuer of
the certificate. Therefore, the issuer certificate has to be located in the Trusted Issuer Store of the
application. When the issuer certificate cannot be found there , the certificate chain is declared incomplete
and the certificate is not accepted by the counterpart. Yet, if the issuer certificate of the issuer of the
application certificate is not a self-signed certificate, the certificate of its issuer has to be available in the

Client Development Introduction Copyright © by TIS

Client Development Introduction 61 / 104 2021/04/15 15:42

Trusted Issuer Store.

User Identification
User Identification through Certificates

Next to the use of a certificate as an identification card for Client / Server applications, a certificate can
also be used to identify a user. A Client application is always operated by a certain user by whom it
operates with the Server. Depending on the Server configuration a Server can request additional
information about the identity of the Client's user from the Client. The user has the possibility to prove his
identity through a certificate. How thoroughly a Server is examining the certificate on validity, authenticity
and confidentiality depends on the Server. The Server provided by the Framework exclusively checks, if
the Thumbprint information of the user identity can be found in its ACL (=Access Control List) for
certificate-based user identities.

Aspects of Security

Productive use
The primary goal of the Framework is to make getting the grips of the OPC UA as easy as possible. This
basic thought sadly also leads to the fact that without secondary configuration of the Server a completely
save connection / communication between Client and Server does not occur. Yet, if the final Spike has
been implemented and tested, second thought should be given to the aspects of security.

Even if the Server is only run within a local network one should consider the use of access control lists
(OpcServer.Security.UserNameAcl/CertificateAcl property). Here user identities can be defined via a
certificate or a username-password pair. A Certificate Identity increases security in signed data
transmission, for example.

Especially in cases of the Server being accessible publicly, other Security-Policies with appropriately higher
Security-Mode and a matching Security-Algorithm should be negotiated. The Security-Policy-Mode “None”
used by default is in this matter literally the “Great Wide Open” into your Server
(OpcServer.Security.EndpointPolicies Properties). Last but not least one should consider the access
via an anonymous user identity (OpcServer.Security.AnonymousAcl.IsEnabled property). According to
the OPC Foundation every Endpoint Policy used above its level should stress its “quality”, in which the rule
applies that the higher the level, the “better” the endpoint this policy uses.

For simplified handling of certificates the Server accepts every certificate by default
(OpcServer.Security.AutoAcceptUntrustedCertificates property), also those it should deny under
productive conditions because only certificates known to the Server (located in the Trusted Peer Store)
apply as truly trusted. Apart from that the validity of a certificate should always be verified, including the
“expiration date” of the certificate, for example. Other properties of the certificate or looser rules for the
validity and trustworthiness of a Client certificate can be furthermore carried out manually
(OpcServer.CertificateValidationFailed event).

Client Development Introduction Copyright © by TIS

Client Development Introduction 62 / 104 2021/04/15 15:42

Server Development Guide
The Server Frame

Add reference to the Opc.UaFx.Advanced Server Namespace:1.
using Opc.UaFx.Server;

Instance of the OpcServer Class with desired standard base address:2.
var server = new OpcServer("opc.tcp://localhost:4840/");

Start Server and create Clients:3.
server.Start();

Your code to process Client requests:4.
// Your code to process client requests.

Close all sessions before closing the application and shut down the Server:5.
server.Stop();

Using the using block this looks as follows:6.
using (var server = new OpcServer("opc.tcp://localhost:4840/")) {
 server.Start();
 // Your code to process client requests.
}

Node Management
Node Creation
The following types are used: OpcServer, OpcNode, OpcNodeId, OpcNodeManager, OpcFolderNode,
OpcVariableNode, OpcDataVariableNode, OpcDataVariableNode and OpcFileNode.

An OpcNode defines a data point of the Server. This can be a logical folder (OpcFolderNode), a variable
(OpcVariableNode), a method (OpcMethodNode), a file (OpcFileNode) and much more. An OpcNode
is unambiguously identified by an OpcNodeId. It exists of a value (a text, a number, …) - the original ID -
and of an index of the Namespace to which a Node is assigned. The Namespace is determinated by a Uri
(= Uniform Resource Identifier). The Namespaces available are decided by the Node-Manager used by the
Server.

Every Node-Manager defines at least one Namespace. Those Namespaces are used for the categorization
of the Nodes of a Node-Manager, by which in return a Node can be assigned to a particular Node-Manager.

Client Development Introduction Copyright © by TIS

Client Development Introduction 63 / 104 2021/04/15 15:42

The Default-Namespace of a Node-Manager is used in case no other Namespace is assigned to a Node. The
Nodes defined by a Node-Manager are also called Nodes in the Address Space of the Node-Manager.

During the starting procedure of the Server the Server asks its Node-Managers to produce their Address
Space, meaning their (static) Nodes. More (dynamic) Nodes can also be added to or removed from the
Address Space of a Node-Manager during the execution of the Server. An always static Address Space can
also be generated without an explicit custom Node-Manager by telling the Server the static Nodes for the
Namespace http://{host}/{path}/nodes/ directly. Instead of the Nodes of the static Address Space custom
Node-Managers can be defined.

Create a custom Address Space with a Root Node for the Default Namespace
http://{host}/{path}/nodes/:
var machineNode = new OpcFolderNode("Machine");
var machineIsRunningNode = new OpcDataVariableNode<bool>(machineNode, "IsRunning");

// Note: An enumerable of nodes can be also passed.
var server = new OpcServer("opc.tcp://localhost:4840/", machineNode);

Define a custom Node-Manager:
public class MyNodeManager : OpcNodeManager
{
 public MyNodeManager()
 : base("http://mynamespace/")
 {
 }
}

Create a custom Address Space with a Root Node by custom Node-Manager:
protected override IEnumerable<IOpcNode> CreateNodes(OpcNodeReferenceCollection
references)
{
 // Define custom root node.
 var machineNode = new OpcFolderNode(new OpcName("Machine",
this.DefaultNamespaceIndex));

 // Add custom root node to the Objects-Folder (the root of all server nodes):
 references.Add(machineNode, OpcObjectTypes.ObjectsFolder);

 // Add custom sub node beneath of the custom root node:
 var isMachineRunningNode = new OpcDataVariableNode<bool>(machineNode,
"IsRunning");

 // Return each custom root node using yield return.
 yield return machineNode;
}

Introduce a custom Node-Manager to the Server:
// Note: An enumerable of node managers can be also passed.
var server = new OpcServer("opc.tcp://localhost:4840/", new MyNodeManager());

Client Development Introduction Copyright © by TIS

Client Development Introduction 64 / 104 2021/04/15 15:42

Node Accessibility
The following types are used: OpcServer, IOpcNode, OpcNodeId, OpcNodeManager, OpcFolderNode,
OpcVariableNode, OpcDataVariableNode and OpcDataVariableNode.

Not all nodes should always be visible to all users of the server. To restrict the visibility of the nodes, any
criteria can be applied via the own node manager. Restricting the accessibility by identity and a certain
node might already match your needs. The following simple tree should illustrate the use.

protected override IEnumerable<IOpcNode> CreateNodes(OpcNodeReferenceCollection references)
{
 var machine = new OpcObjectNode(
 "Machine",
 new OpcDataVariableNode<int>("Speed", value: 123),
 new OpcDataVariableNode<string>("Job", value: "JOB0815"));

 references.Add(machine, OpcObjectTypes.ObjectsFolder);
 yield return machine;
}

If a user shall now have access to all nodes except the “Speed” node, the possible implementation of the
IsNodeAccessible method can look like this:

protected override bool IsNodeAccessible(OpcContext context, OpcNodeId viewId, IOpcNodeInfo
node)
{
 if (context.Identity.DisplayName == "a")
 return true;

 if (context.Identity.DisplayName == "b" && node.Name.Value == "Speed")
 return false;

 return base.IsNodeAccessible(context, viewId, node);
}

Node Updates
The following types are used: OpcStatusCode and OpcVariableNode.

During the execution of the Server, various nodes often have to be updated according to the underlying
system. Simple Object-, Folder- or Method-Nodes rarely need to be updated - however Variable-Nodes
more regular. Depending on the available information it is possible to store the Timestamp and quality of
the value together with the actual value of a Variable-Node. The following example outlines the handling.

var variableNode = new OpcVariableNode(...);

variableNode.Status.Update(OpcStatusCode.Good);
variableNode.Timestamp = DateTime.UtcNow;
variableNode.Value = ...;

variableNode.ApplyChanges(...);

It should be noted that Client applications are only informed about the changes to the node when
ApplyChanges is called (assuming that a Client have completed an active subscription for the node and the
Value attribute).

Client Development Introduction Copyright © by TIS

Client Development Introduction 65 / 104 2021/04/15 15:42

Values of Node(s)
Reading Values
The following types are used: OpcServer, OpcVariableNode, OpcDataVariableNode, OpcDataVariableNode,
OpcReadAttributeValueCallback, OpcAttributeValue, OpcReadAttributeValueContext,
OpcReadVariableValueCallback, OpcReadVariableValueContext and OpcVariableValue.

An OpcNode defines its metadata by attributes. Contrasting the generally always provided attributes like
Name, DisplayName or Description, the Value Attribute is only available on Variable-Nodes. The values of
attributes are saved by the concerning Node-Instances internally by default. If the value of another source
of data is to be established, appropriate Callback-Methods for provision of the values can be defined. Here
the signature of the ReadVariableValue-Callback-Method differenciates from the other ReadAttributeValue-
Callback-Methods. In case of the Value Attribute instead of an OpcAttributeValue instance a
OpcVariableValue instance is expected. This instance consists, additionally to the actual value, of a time
stamp at which the value was identified at the source of the value (SourceTimestamp) and of status
information about the quality of the value. Note that the Read-Callbacks are retrieved at every read
operation of the metadata by a Client. This is the case when using the services Read and Browse.

Set the default value of the Value Attribute of a Variable-Node:
var machineIsRunningNode = new OpcDataVariableNode<bool>("IsRunning", false);

Set the value of the Value Attribute of a Variable-Node:
machineIsRunningNode.Value = true;

Set the value of a Description Attribute:
machineIsRunningNode.Description = "My description";

Inform all Clients (in case of an active subscription) about the attribute changes and accept changes:
machineIsRunningNode.ApplyChanges(server.SystemContext);

Determine the value of the Description Attribute from another data source than the internal:
machineIsRunningNode.ReadDescriptionCallback = HandleReadDescription;
...
private OpcAttributeValue<string> HandleReadDescription(
 OpcReadAttributeValueContext context,
 OpcAttributeValue<string> value)
{
 return ReadDescriptionFromDataSource(context.Node) ?? value;
}

Determine the value of the Value Attribute of a Variable-Node from another data source than the
internal:

Client Development Introduction Copyright © by TIS

Client Development Introduction 66 / 104 2021/04/15 15:42

machineIsRunningNode.ReadVariableValueCallback = HandleReadVariableValue;
...
private OpcVariableValue<object> HandleReadVariableValue(
 OpcReadVariableValueContext context,
 OpcVariableValue<object> value)
{
 return ReadValueFromDataSource(context.Node) ?? value;
}

Writing Values
The following types are used: OpcServer, OpcVariableNode, OpcDataVariableNode, OpcDataVariableNode,
OpcWriteAttributeValueCallback, OpcAttributeValue, OpcWriteAttributeValueContext,
OpcWriteVariableValueCallback, OpcWriteVariableValueContext and OpcVariableValue.

An OpcNode defines its metadata by attributes. Contrasting the generally always provided attributes like
Name, DisplayName or Description, the Value Attribute is only available on Variable-Nodes. The values of
attributes are saved by the concerning Node-Instances internally by default. If the value is to be saved into
another data source, appropriate Callback-Methods for saving the values can be defined. Here the
signature of the WriteVariableValue-Callback-Method differenciates from the other WriteAttributeValue-
Callback-Methods. In case of the Value Attribute instead of an OpcAttributeValue instance a
OpcVariableValue instance is expected. This instance consists, additionally to the actual value, of a time
stamp at which the value was identified at the source of the value (SourceTimestamp) and of status
information about the quality of the value. Note that the Write-Callbacks are retrieved at every write
operation of the metadata by a Client. This is the case when using the Write service.

Set the default value of the Value Attribute of a Variable-Node:
var machineIsRunningNode = new OpcDataVariableNode<bool>("IsRunning", false);

Set the value of the Value Attribute of a Variable-Node:
machineIsRunningNode.Value = true;

Set the value of a Description Attribute:
machineIsRunningNode.Description = "My description";

Inform all Clients (in case of an active subscription) about the attribute changes and accept changes:
machineIsRunningNode.ApplyChanges(server.SystemContext);

Save the value of the Description Attribute from another data source than the internal:
machineIsRunningNode.WriteDescriptionCallback = HandleWriteDescription;
...
private OpcAttributeValue<string> HandleWriteDescription(
 OpcWriteAttributeValueContext context,
 OpcAttributeValue<string> value)
{
 return WriteDescriptionToDataSource(context.Node, value) ?? value;
}

Save the value of the Value Attribute of a Variable-Node from another data source than the internal:

Client Development Introduction Copyright © by TIS

Client Development Introduction 67 / 104 2021/04/15 15:42

machineIsRunningNode.WriteVariableValueCallback = HandleWriteVariableValue;
...
private OpcVariableValue<object> HandleWriteVariableValue(
 OpcWriteVariableValueContext context,
 OpcVariableValue<object> value)
{
 return WriteValueToDataSource(context.Node, value) ?? value;
}

Historical Data
The following types are used: OpcServer, OpcNodeManager, IOpcNode, OpcHistoryValue,
OpcHistoryModificationInfo, OpcValueCollection, OpcStatusCollection, OpcDeleteHistoryOptions,
OpcReadHistoryOptions, IOpcNodeHistoryProvider and OpcNodeHistory<T>.

According to the OPC UA specification every Node of the category Variable supports the historical logging
of the values of its Value Attribute. With every change in value of the Value Attribute the new value is
saved together with the time stamp of the Value Attribute. These pairs consisting of value and time
stamp are called historical data. The Server decides on where to save the data. However, the Client can
determine via the IsHistorizing Attribute of the Node, if the Server supplies historical data for a Node and /
or historically saves value changes. A Client can read, update, replace, delete or create historical data.
Mostly, historical data is read by the Client.

The historical data provided by the Server can be administrated either directly in the Node-Manager of the
current Node via the in-memory based Node-Historian or via a custom Historian. Note that according to
OPC UA historical values always use their time stamp as a key. Correspondingly, it applies that a time
stamp under every historical value of a Node is always unambiguous and therefore identifies only one
certain value and its status information. Also, the historical data saved this way is distinguished between
pure and modified historical data. The latter represents a kind of Changelog regarding to databanks. This
Changelog can be used to process historical data that had been valid before a manipulation of the initial
historical data. At the same time it is possible to retrace any changes made to the historical data. For
example, if a historical value is replaced, the prior value is saved in the modified history. An historical
value removed from the history is also saved in the modified history. Additionally, the kind of change, the
time stamp of the change and the username of the instructor of the change is saved.

If a Client wants to read the (modified) historical data of a Node:

the according Node has to be a Variable-Node, the record of historical data has to be activated and
access to it must be cleared.

If an OpcNodeHistorian is used it takes over the activation and release of the historical data
record:
// "this" points to the Node-Manager of the node.
var machineIsRunningHistorian = new OpcNodeHistorian(this, machineIsRunningNode);

Manual activation and release of the historical data history:
machineIsRunningNode.AccessLevel |= OpcAccessLevel.HistoryReadOrWrite;
machineIsRunningNode.UserAccessLevel |= OpcAccessLevel.HistoryReadOrWrite;

machineIsRunningNode.IsHistorizing = true;

changes to the Value Attributs of the Variable-Node have to be monitored and transferred in a
storage for the historical data:

Client Development Introduction Copyright © by TIS

Client Development Introduction 68 / 104 2021/04/15 15:42

If an OpcNodeHistorian is used it can be hired for automatical updates of the history:
machineIsRunningHistorian.AutoUpdateHistory = true;

For manual overwatch of the changes to the Value Attribute the BeforeApplyChanges event of
the Variable-Node should be subscribed to:
machineIsRunningNode.BeforeApplyChanges += HandleBeforeApplyChanges;
...
private void HandleBeforeApplyChanges(object sender, EventArgs e)
{
 // Update (modified) Node History here.
}

historical data has to be provided to the Client.
If an IOpcNodeHistoryProvider like the OpcNodeHistorian is used it has to be mentioned
to the Server via the Node-Manager:
protected override IOpcNodeHistoryProvider RetrieveNodeHistoryProvider(IOpcNode
node)
{
 if (node == machineIsRunnigNode)
 return machineIsRunningHistorian;

 return base.RetrieveNodeHistoryProvider(node);
}

If a custom IOpcNodeHistoryProvider is used its ReadHistory Method will be used:
public IEnumerable<OpcHistoryValue> ReadHistory(
 OpcContext context,
 DateTime? startTime,
 DateTime? endTime,
 OpcReadHistoryOptions options)
{
 // Read (modified) Node History here.
}

If the Node-Manager shall itself take care of the history of its Nodes, the ReadHistory Method
has to be implemented:
protected override IEnumerable<OpcHistoryValue> ReadHistory(
 IOpcNode node,
 DateTime? startTime,
 DateTime? endTime,
 OpcReadHistoryOptions options)
{
 // Read (modified) Node History here.
}

If a Client wants to generate the historical data of a Node the new values have to be filed in the history as
well as in the modified history:

If an IOpcNodeHistoryProvider like the OpcNodeHistorian is used it has to be mentioned to the
Server via the Node-Manager:

Client Development Introduction Copyright © by TIS

Client Development Introduction 69 / 104 2021/04/15 15:42

protected override IOpcNodeHistoryProvider RetrieveNodeHistoryProvider(IOpcNode node)
{
 if (node == machineIsRunnigNode)
 return machineIsRunningHistorian;

 return base.RetrieveNodeHistoryProvider(node);
}

If a custom IOpcNodeHistoryProvider is used its CreateHistory Method will be used:
public OpcStatusCollection CreateHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Create (modified) Node History here.
}

If the Node-Manager shall itself take care of the history of its Nodes, the CreateHistory Method has
to be implemented:
protected override OpcStatusCollection CreateHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Create (modified) Node History here.
}

If a Client wants to delete the historical data of a Node, the values to be deleted have to be transferred
into the modified history and deleted from the actual history. If modified history values are to be deleted
this can happen directly in the modified history:

If an IOpcNodeHistoryProvider like the OpcNodeHistorian is used it must be mentioned to the
Server via the Node-Manager:

protected override IOpcNodeHistoryProvider RetrieveNodeHistoryProvider(IOpcNode node)
{
 if (node == machineIsRunnigNode)
 return machineIsRunningHistorian;

 return base.RetrieveNodeHistoryProvider(node);
}

If a custom IOpcNodeHistoryProvider is used one of its DeleteHistory Methods will be used:

Client Development Introduction Copyright © by TIS

Client Development Introduction 70 / 104 2021/04/15 15:42

public OpcStatusCollection DeleteHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 IEnumerable<DateTime> times)
{
 // Delete Node History entries and add them to the modified Node History here.
}

public OpcStatusCollection DeleteHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Delete Node History entries and add them to the modified Node History here.
}

public OpcStatusCollection DeleteHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 DateTime? startTime,
 DateTime? endTime,
 OpcDeleteHistoryOptions options)
{
 // Delete Node History entries and add them to the modified Node History here.
}

If the Node Manager itself shall take care of the history of its Nodes the DeleteHistory Methods have
to be implemented:

protected override OpcStatusCollection DeleteHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 IEnumerable<DateTime> times)
{
 // Delete Node History entries and add them to the modified Node History here.
}

protected override OpcStatusCollection DeleteHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Delete Node History entries and add them to the modified Node History here.
}

protected override OpcStatusCollection DeleteHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 DateTime? startTime,
 DateTime? endTime,
 OpcDeleteHistoryOptions options)
{
 // Delete Node History entries and add them to the modified Node History here.
}

If a Client wants to replace the historical data of a Node the values to be replaced have to be transferred
into the modified history and replaced in the actual history:

Client Development Introduction Copyright © by TIS

Client Development Introduction 71 / 104 2021/04/15 15:42

If an IOpcNodeHistoryProvider like the OpcNodeHistorian is used it has to be mentioned to the
Server via the Node-Manager:
protected override IOpcNodeHistoryProvider RetrieveNodeHistoryProvider(IOpcNode node)
{
 if (node == machineIsRunnigNode)
 return machineIsRunningHistorian;

 return base.RetrieveNodeHistoryProvider(node);
}

If a custom IOpcNodeHistoryProvider is used the ReplaceHistory Method is used:
public OpcStatusCollection ReplaceHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Replace Node History entries and add them to the modified Node History here.
}

If the Node-Manager itself shall take care of the history of its Nodes the ReplaceHistory Methods has
to be implemented:
protected override OpcStatusCollection ReplaceHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Replace Node History entries and add them to the modified Node History here.
}

If a Client wants to generate historical data of a Node (if it does not exist yet) or replace it (if it already
exists) - so according to OPC UA update it - non-existant entries have to be written into the history and
modified history. Existant entries have to be replaced in the history and written into the modified history:

If an IOpcNodeHistoryProvider like the OpcNodeHistorian is used it has to be mentioned to the
Server via the Node-Manager:
protected override IOpcNodeHistoryProvider RetrieveNodeHistoryProvider(IOpcNode node)
{
 if (node == machineIsRunnigNode)
 return machineIsRunningHistorian;

 return base.RetrieveNodeHistoryProvider(node);
}

If a custom IOpcNodeHistoryProvider is used the UpdateHistory Method is used:
public OpcStatusCollection UpdateHistory(
 OpcContext context,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Update (modified) Node History entries here.
}

If the Node-Manager itself shall take care of the history of its Nodes the UpdateHistory Methods has
to be implemented:

Client Development Introduction Copyright © by TIS

Client Development Introduction 72 / 104 2021/04/15 15:42

protected override OpcStatusCollection UpdateHistory(
 IOpcNode node,
 OpcHistoryModificationInfo modificationInfo,
 OpcValueCollection values)
{
 // Update (modified) Node History entries here.
}

In use of the Class OpcNodeHistory<T> the data of the history and the modified history can be
administrated in the Store. Apart from several Methods operating the usual access scenarios to historical
data, the separate constructors of the Class allow to set the capacity of the history. Also, the history can
be “preloaded” and monitored via several events.

Definition of a history depending on the kind of historical data:

The Class OpcHistoryValueis used as a type parameter for simple history:
var history = new OpcNodeHistory<OpcHistoryValue>();

The Class OpcModifiedHistoryValue is used as a type parameter for modified history:
var modifiedHistory = new OpcNodeHistory<OpcModifiedHistoryValue>();

Using the Class OpcNodeHistory<T> the usual history scenarios like Read, Create, Delete, Replace and
Update can be implemented as follows:

Szenario: Create History:
var results = OpcStatusCollection.Create(OpcStatusCode.Good, values.Count);

for (int index = ; index < values.Count; index++) {
 var result = results[index];
 var value = OpcHistoryValue.Create(values[index]);

 if (MatchesValueType(value)) {
 if (history.Contains(value.Timestamp)) {
 result.Update(OpcStatusCode.BadEntryExists);
 }
 else {
 history.Add(value);

 var modifiedValue = value.CreateModified(modificationInfo);
 modifiedHistory.Add(modifiedValue);

 result.Update(OpcStatusCode.GoodEntryInserted);
 }
 }
 else {
 result.Update(OpcStatusCode.BadTypeMismatch);
 }
}

return results;

Scenario: Delete History
Via time stamp:

Client Development Introduction Copyright © by TIS

Client Development Introduction 73 / 104 2021/04/15 15:42

var results = OpcStatusCollection.Create(OpcStatusCode.Good, times.Count());

int index = ;

foreach (var time in times) {
 var result = results[index++];

 if (this.history.Contains(time)) {
 var value = this.history[time];
 this.history.RemoveAt(time);

 var modifiedValue = value.CreateModified(modificationInfo);
 this.modifiedHistory.Add(modifiedValue);
 }
 else {
 result.Update(OpcStatusCode.BadNoEntryExists);
 }
}

return results;

Via values:
var results = OpcStatusCollection.Create(OpcStatusCode.Good, values.Count);

for (int index = ; index < values.Count; index++) {
 var timestamp = OpcHistoryValue.Create(values[index]).Timestamp;
 var result = results[index];

 if (history.Contains(timestamp)) {
 var value = history[timestamp];
 history.RemoveAt(timestamp);

 var modifiedValue = value.CreateModified(modificationInfo);
 modifiedHistory.Add(modifiedValue);
 }
 else {
 result.Update(OpcStatusCode.BadNoEntryExists);
 }
}

return results;

Via time span:

Client Development Introduction Copyright © by TIS

Client Development Introduction 74 / 104 2021/04/15 15:42

var results = new OpcStatusCollection();

bool isModified = (options & OpcDeleteHistoryOptions.Modified)
 == OpcDeleteHistoryOptions.Modified;

if (isModified) {
 modifiedHistory.RemoveRange(startTime, endTime);
}
else {
 var values = history.Enumerate(startTime, endTime).ToArray();
 history.RemoveRange(startTime, endTime);

 for (int index = ; index < values.Length; index++) {
 var value = values[index];
 modifiedHistory.Add(value.CreateModified(modificationInfo));

 results.Add(OpcStatusCode.Good);
 }
}

return results;

Scenario: Replace History:
var results = OpcStatusCollection.Create(OpcStatusCode.Good, values.Count);

for (int index = ; index < values.Count; index++) {
 var result = results[index];
 var value = OpcHistoryValue.Create(values[index]);

 if (this.MatchesNodeValueType(value)) {
 if (this.history.Contains(value.Timestamp)) {
 var oldValue = this.history[value.Timestamp];
 history.Replace(value);

 var modifiedValue = oldValue.CreateModified(modificationInfo);
 modifiedHistory.Add(modifiedValue);

 result.Update(OpcStatusCode.GoodEntryReplaced);
 }
 else {
 result.Update(OpcStatusCode.BadNoEntryExists);
 }
 }
 else {
 result.Update(OpcStatusCode.BadTypeMismatch);
 }
}

return results;

Scenario: Update History:

Client Development Introduction Copyright © by TIS

Client Development Introduction 75 / 104 2021/04/15 15:42

var results = OpcStatusCollection.Create(OpcStatusCode.Good, values.Count);

for (int index = ; index < values.Count; index++) {
 var result = results[index];
 var value = OpcHistoryValue.Create(values[index]);

 if (MatchesValueType(value)) {
 if (history.Contains(value.Timestamp)) {
 var oldValue = this.history[value.Timestamp];
 history.Replace(value);

 var modifiedValue = oldValue.CreateModified(modificationInfo);
 modifiedHistory.Add(modifiedValue);

 result.Update(OpcStatusCode.GoodEntryReplaced);
 }
 else {
 history.Add(value);

 var modifiedValue = value.CreateModified(modificationInfo);
 modifiedHistory.Add(modifiedValue);

 result.Update(OpcStatusCode.GoodEntryInserted);
 }
 }
 else {
 result.Update(OpcStatusCode.BadTypeMismatch);
 }
}

return results;

Scenario: Read History:
bool isModified = (options & OpcReadHistoryOptions.Modified)
 == OpcReadHistoryOptions.Modified;

if (isModified) {
 return modifiedHistory
 .Enumerate(startTime, endTime)
 .Cast<OpcHistoryValue>()
 .ToArray();
}

return history
 .Enumerate(startTime, endTime)
 .ToArray();

Nodes
Method Nodes
The following types are used here: OpcNodeManager, OpcMethodNode and OpcMethodContext.

Code sections that fulfill an isolated task are called subprograms in programming. Those subprograms are
often described simply as functions or methods. Those kind of methods can be called via method Nodes in

Client Development Introduction Copyright © by TIS

Client Development Introduction 76 / 104 2021/04/15 15:42

the OPC UA. A method Node is defined by the OpcMethodNode class. Method Nodes are called by an OPC
UA Client via the server-sided Call service.

The framework defines a method Node through the one-on-one application of a function pointer (delegate
in C#) to a Node of the category OpcNodeCategory.Method. Herefore the structure of the delegate is
examined via .NET reflections and based on that the method Node with its IN and OUT arguments is
defined.

Define a method Node in the Node manager:

through a method without a parameter:1.
var startMethodNode = new OpcMethodNode(
 machineNode,
 "StartMachine",
 new Action(this.StartMachine));
...
private void StartMachine()
{
 // Your code to execute.
}

through a method with a parameter:2.
var startMethodNode = new OpcMethodNode(
 machineNode,
 "StartMachine",
 new Action<int>(this.StartMachine));
...
private void StartMachine(int reasonNumber)
{
 // Your code to execute.
}

through a method with a callback value:3.
var startMethodNode = new OpcMethodNode(
 machineNode,
 "StartMachine",
 new Func<int>(this.StartMachine));
...
private int StartMachine()
{
 // Your code to execute.
 return statusCode;
}

through a method with a parameter and a callback value:4.
var startMethodNode = new OpcMethodNode(
 machineNode,
 "StartMachine",
 new Func<int, string, int>(this.StartMachine));
...
private int StartMachine(int reasonNumber, string operatorName)
{
 // Your code to execute.
 return statusCode;
}

through a method that needs access to contextual information about the actual “Call” (for this the5.

Client Development Introduction Copyright © by TIS

Client Development Introduction 77 / 104 2021/04/15 15:42

first parameter has to be of the type OpcMethodNodeContext):
var startMethodNode = new OpcMethodNode(
 machineNode,
 "StartMachine",
 new Func<OpcMethodNodeContext, int, int>(this.StartMachine));
...
private int StartMachine(OpcMethodNodeContext context, int reasonNumber)
{
 // Your code to execute.

 this.machineStateVariable.Value = "Started";
 this.machineStateVariable.ApplyChanges(context);

 return statusCode;
}

Also, there is the option to supply additional information about the arguments (callback values and
parameters) of a method via the OpcArgument attribute. This information is considered for the
definition of the method Node arguments and supplied to every Client when browsing the Node. Such a
definition of additional information will look as follows:

[return: OpcArgument("Result", Description = "The result code of the machine driver.")]
private int StartMachine(
 [OpcArgument("ReasonNumber", Description = "0: Maintenance, 1: Manufacturing, 2:
Service")]
 int reasonNumber,
 [OpcArgument("OperatorName", Description = "Optional. Name of the operator of the
current shift.")]
 string operatorName)
{
 // Your code to execute.
 return 10;
}

File Nodes
The following types are used: OpcNodeManager and OpcFileNode.

Nodes of the type FileType define per OPC UA Specification definition certain Property Nodes and Method
Nodes allowing to access a data stream as if accessing. Exclusive information about the content of the
logical or physical file is provided. According to the specification, a possibly existing path to the data is not
provided. The access to the file itself is realized by Open, Close, Read, Write, GetPosition and SetPosition.
The data is always processed binarily. As in every other platform in OPC UA you can set a mode that
provides the kind of planned data access when opening Open. You can also request exclusive access to a
file. After opening the Open Method you receive a numeric key for further file handle. This key always has
to be passed in the Methods Read, Write, GetPosition and SetPosition. Once a file is opened it has to be
closed again when no longer needed.

Define a File Node in the Node-Manager:

var protocollFileNode = new OpcFileNode(
 machineNode,
 "Protocoll.txt",
 new FileInfo(@"..\Protocoll.log"));

Client Development Introduction Copyright © by TIS

Client Development Introduction 78 / 104 2021/04/15 15:42

All other operations to work with the represented file are already provided by the OpcFileNode class.

Datatype Nodes
The following types are used: OpcNodeManager, OpcNodeId, OpcDataTypeAttribute, OpcDataTypeNode
and OpcEnumMemberAttribute.

In some scenarios it is necessary to describe the Server provided data using user-defined data types. Such
a data type can for example be an enumeration. Depending from the entry (differentiable by their name)
there can be used a different value or a combination of values which are / can again represented by other
entries. In the last case such an enumeration is called a flag-enumeration. Are the bits of an enum-entry
bitwise set in its flag enumeration value, then the whole value applies although it does not match the
exact value of the entry (because of other enum-entries are applicable). The thereby valid (combinations
of) values have to be provided as Name-Value-Pairs by the Server using a specific ID, to enable Read- and
Write-Access on Nodes - which are using the type of enumeration - using valid values. To publish a user-
defined enumeration as an enumeration in the Address Space of the Server, the enumeration have to use
the OpcDataTypeAttribute. Using this attribute the data of the OpcNodeId associated with the type of
enumeration is defined. Finally, the user-defined data type must be published via one of the Server's Node-
Managers. How this works in detail can be seen in the following code example:

// Define the node identifier associated with the custom data type.
[OpcDataType(id: "MachineStatus", namespaceIndex: 2)]
internal enum MachineStatus : int
{
 Unknown = ,
 Stopped = 1,
 Started = 2,
 Waiting = 3,
 Suspended = 4
}

...

// MyNodeManager.cs
protected override IEnumerable<IOpcNode> CreateNodes(OpcNodeReferenceCollection references)
{
 ...

 // Publish a new data type node using the custom type.
 return new IOpcNode[] { ..., new OpcDataTypeNode<MachineStatus>() };
}

Additional information about the individual enum-entries can be defined using the
OpcEnumMemberAttribute. The thereby optional supported Description property is only used in case
there the entry is part of a flag enumeration. The previously represented enumeration could then look like
as follows:

Client Development Introduction Copyright © by TIS

Client Development Introduction 79 / 104 2021/04/15 15:42

[OpcDataType(id: "MachineStatus", namespaceIndex: 2)]
internal enum MachineStatus : int
{
 Unknown = ,
 Stopped = 1,
 Started = 2,

 [OpcEnumMember("Paused by Job")]
 WaitingForOrders = 3,

 [OpcEnumMember("Paused by Operator")]
 Suspended = 4,
}

Data Nodes
The following types are used: OpcNodeManager, OpcDataVariableNode and OpcDataVariableNode.

With the help of the OpcDataVariableNode it is possible to provide simple scalar as well as complex data
structures. In addition to the value itself, these self-describing nodes also provide information about the
data types valid for the value. This includes, for example, the length of an array. Such a data node is
created as follows:

// Node of the type Int32
var variable1Node = new OpcDataVariableNode<int>(machineNode, "Var1");

// Node of the type Int16
var variable2Node = new OpcDataVariableNode<short>(machineNode, "Var2");

// Node of the type String
var variable3Node = new OpcDataVariableNode<string>(machineNode, "Var3");

// Node of the type float-array
var variable4Node = new OpcDataVariableNode<float[]>(machineNode, "Var4", new float[] {
0.1f, 0.5f });

// Node of the type MachineStatus enum
var variable5Node = new OpcDataVariableNode<MachineStatus>(machineNode, "Var5");

Data-Item Nodes
The following types are used: OpcNodeManager, OpcDataItemNode and OpcDataItemNode.

The data provided by an OPC UA Server often does not come directly 1: 1 from the underlying system of
the server. Even though these data variables can be provided by means of instances of
OpcDataVariableNodes, the origin or the Definition - how a value of a data point is established - is of
interest for the correct further processing and interpretation. Especially when used by third parties, this
information is not only a part of the documentation, but also a helpful tool for internal data processing.
This is exactly where the OpcDataItemNode comes in and provides the Definition property with the
necessary information about the realization of the values of the Data-Item Node. In addition, the
ValuePrecision property provides a value that tells you how accurate the values can be. This Node is
defined as follows:

Client Development Introduction Copyright © by TIS

Client Development Introduction 80 / 104 2021/04/15 15:42

var statusNode = new OpcDataItemNode<int>(machineNode, "Status");
statusNode.Definition = "Status Code in low word, Progress Code in high word encoded in
BCD";

In general, the value of the Definition property depends on the manufacturer.

Data-Item Nodes for analog Values
The following types are used: OpcNodeManager, OpcAnalogItemNode, OpcAnalogItemNode,
OpcValueRange and OpcEngineeringUnitInfo.

Nodes of the type AnalogItemType essentially represent a specialization of the OpcDataItemNode. The
additionally offered properties allow the provided analog values to be specified more precisely. The
InstrumentRange serves as the definition of the range of values used by the source of the analog data. The
EngineeringUnit is used to classify the unit of measure associated with the value in accordance with the
UNECE Recommendations N° 20. These recommendations are based on the International System of Units,
short SI Units. These two properties are supplemented by the EngineeringUnitRange which can be
provided according to the EngineeringUnit value range valid during normal operation. Such a node can
then be defined in the Node-Manager as follows:

var temperatureNode = new OpcAnalogItemNode<float>(machineNode, "Temperature");

temperatureNode.InstrumentRange = new OpcValueRange(80.0, -40.0);
temperatureNode.EngineeringUnit = new OpcEngineeringUnitInfo(4408652, "°C", "degree
Celsius");
temperatureNode.EngineeringUnitRange = new OpcValueRange(70.8, 5.0);

The UnitID expected in the constructor of the OpcEngineeringUnitInfo can be taken from the UNECE
table for measurement units at the OPC Foundation:UNECE units of measure in OPC UA

NodeSets
NodeSets describe the contents of the address space of a server in the form of the XML (eXtensible Markup
Language). Part of the description is the definition of data types and their transported logical (data-
dependent information) as well as physical (in memory) structure. In addition, the definitions of node types
as well as concrete node instances can be found in a NodeSet. The root element “UANodeSet” also
describes the relationships between the individual nodes defined in the NodeSet, but also defined in other
NodeSets, as well as in the specification.

Companion specifications not only extend the general definition of the address space, but also provide
their own data types and node types. As a result, one or more NodeSets exist for each companion
specification. For a server to meet a companion specification, the server must implement the types and
behaviors defined in this specification.

Another case in which NodeSets are used as a description of the address space is the configuration of
controllers. This means that the entire configured configuration of a controller can be exported from
configuration software such as TIA Portal and used to initialize the OPC UA server of a controller.

Regardless of the source of a NodeSet, if a NodeSet is to be used by a server, it must provide the
necessary logic to import and implement the address space described in the NodeSet. How it works shows
the next sections.

Client Development Introduction Copyright © by TIS

Client Development Introduction 81 / 104 2021/04/15 15:42

Import NodeSets
The following types are used here: OpcNodeSet, OpcNodeSetManager and OpcNodeManager.

Nodes which are described in a NodeSet can be imported via the OpcNodeSetManager 1: 1:

var umatiManager = OpcNodeSetManager.Create(
 OpcNodeSet.Load(@".\umati.xml"),
 OpcNodeSet.Load(@".\umati-instances.xml"));

using (var server = new OpcServer("opc.tcp://localhost:4840/", umatiManager)) {
 server.Start();
 ...
}

When calling OpcNodeSetManager.Create(…), 1-n NodeSets can be specified. The OpcNodeManager
created when calling OpcNodeSetManager.Create takes care of importing the NodeSets and thus
generates the nodes defined in the NodeSets within the address space of the server when starting the
server. On the other hand, if you want a custom NodeManager to handle the import of a NodeSet, you can
do so simply by overriding the ImportNodes method of the OpcNodeManager class:

protected override IEnumerable<OpcNodeSet> ImportNodes()
{
 yield return OpcNodeSet.Load(@".\umati.xml");
 yield return OpcNodeSet.Load(@".\umati-instances.xml");
}

Implement NodeSets
The following types are used here: OpcNodeManager and IOpcNode.

Often the simple import of a NodeSet is not enough, as the associated logic for the connection of the
underlying system is still missing. This logic is necessary, for example, to map the reading of a node to the
reading of, for example, a word in a data block. The same applies again to the writing of a node.

To implement this logic, the OpcNodeManager.ImplementNode method within a custom NodeManager
will be overridden as follows:

protected override void ImplementNode(IOpcNode node)
{
 // Implement your Node(s) here.
}

For example, in the case of a UMATI node set, the logic for simulating the status of a lamp could be
implemented as follows:

Client Development Introduction Copyright © by TIS

Client Development Introduction 82 / 104 2021/04/15 15:42

private static readonly OpcNodeId LampTypeId = "ns=2;i=1041";
private readonly Random random = new Random();

protected override void ImplementNode(IOpcNode node)
{
 if (node is OpcVariableNode variableNode && variableNode.Name == "2:Status") {
 if (variableNode?.Parent is OpcObjectNode objectNode && objectNode.TypeDefinitionId
== LampTypeId) {
 variableNode.ReadVariableValueCallback = (context, value) => new
OpcVariableValue<object>(this.random.Next(, 2));
 }
 }
}

Events
Event Reporting
The following types are used: OpcServer, OpcNodeManager, OpcEventSeverity and OpcText.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Events inform a subscriber about operations, conditions, and system specific circumstances. Such
information can be delivered directly through global events to interested parties. A global event can be
triggered and dispatched either by a OpcNodeManager or by a OpcServer instance. For this, the
framework offers various method overloads of the ReportEvent(…)- method. To trigger a global event
using a OpcServer instance, you have the following options:

Client Development Introduction Copyright © by TIS

Client Development Introduction 83 / 104 2021/04/15 15:42

var server = new OpcServer(...);
// ...

server.ReportEvent(
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation.");

// Same usage as before + arguments support.
server.ReportEvent(
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation at machine {0}.",
 machineId);

// Sames usage as before + source node.
server.ReportEvent(
 sourceNode,
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation.");

// Same usage as before + arguments support.
server.ReportEvent(
 sourceNode,
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation at machine {0}.",
 machineId);

// Same usage as before + explicit source information.
server.ReportEvent(
 sourceNodeId,
 sourceNodeName,
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation.");

// Same usage as before + arguments support.
server.ReportEvent(
 sourceNodeId,
 sourceNodeName,
 OpcEventSeverity.Medium,
 "Recognized a medium urgent situation at machine {0}.",
 machineId);

The same method overloads can also be found as instance methods of a OpcNodeManager instance.

Event Nodes
The following types are used: OpcServer, OpcNodeManager and OpcEventNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

It is not always appropriate to send events globally through the Server to all subscribers. Often the context
therefore plays a crucial role in whether an event is of interest to a subscriber. Event Nodes are used to
define local events. The base class of all Event Nodes represents the class OpcEventNode. Using these it
is possible to provide simple events in the form of local events, as shown in the 'Providing Events' section.
Since this is a Node, the Event Node (OpcEventNode) must first be created in the OpcNodeManager
like any other Node:

var activatedEvent = new OpcEventNode(machineOne, "Activated");

Client Development Introduction Copyright © by TIS

Client Development Introduction 84 / 104 2021/04/15 15:42

So that an event can now be sent by this Event Node, it have to be defined as a 'Notifier'. For this purpose,
the Event Node is registered as a 'Notifier' for each Node via which a subscription is to be able to receive
the local event. This works as follows:

machineOne.AddNotifier(this.SystemContext, activatedEvent);

Before an event is triggered, all information relevant for the event must be entered on the Event Node.
Which information is changed and how it is determined depends on the individual case of application. In
general, this works as follows:

activatedEvent.SourceNodeId = sourceNodeId;
activatedEvent.SourceName = sourceNodeName;
activatedEvent.Severity = OpcEventSeverity.Medium;
activatedEvent.Message = "Recognized a medium urgent situation.";

Additionally the Event Node OpcEventNode offers further properties:

// Server generated value to identify a specific Event
activatedEvent.EventId = ...;

// The time the event occured
activatedEvent.Time = ...;

// The time the event has been received by the underlaying system / device
activatedEvent.ReceiveTime = ...;

After configuring the event to be created, only the ReportEvent(…)- method of the OpcEventNode
instance needs to be called:

activatedEvent.ReportEvent(this.SystemContext);

This will automatically invoke the ApplyChanges(…) method on the Node, creates a snapshot of the Node
and send it to all subscribers. After calling the ReportEvent(…) method, the properties of the
OpcEventNode can be changed as desired.

Generally, after a subscriber is only informed of events, as long as he is in contact with the Server and has
subscribed events, a subscriber will not know what events have already occurred prior to establishing a
connection to the Server. If a Server is to inform subscribers retrospectively about past events, these can
be provided by the Server on request from the subscriber as follows:

machineOne.QueryEventsCallback = (context, events) => {
 // Ensure that an re-entrance upon notifier cross-references will not add
 // events to the collection which are already stored in.
 if (events.Count !=)
 return;

 events.Add(activatedEvent.CreateEvent(context));
};

It should be noted at this point that each Node under which an Event Node has been registered as 'Notifier'
must separately specify such a callback. In general, however, the Server is not obliged to provide
past events. In addition, it is always possible to create a snapshot of the Node using the CreateEvent(…)
method of the OpcEventNode, to cache it and to provide the cached snapshots when the
QueryEventsCallback is called.

Client Development Introduction Copyright © by TIS

Client Development Introduction 85 / 104 2021/04/15 15:42

Event Nodes with Conditions
The following types are used: OpcServer, OpcNodeManager and OpcConditionNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A specialization of the OpcEventNode (presented in section 'Providing Event Nodes') is the class
OpcConditionNode. It serves the definition of events to which certain conditions are attached. Only in
case the condition given to the Event Node is true an event should be triggered. Information associated
with the Node also includes information about the state of this condition, as well as information associated
with the evaluation of the condition. Since this information can vary in complexity depending on the
scenario, the OpcConditionNode represents the base class of all Event Nodes to which a condition is
attached. Such a Node is created like an OpcEventNode. In the following, therefore, only the specific
further properties are shown:

var maintenanceEvent = new OpcConditionNode(machineOne, "Maintenance");

// Interesting for a client yes or no
maintenanceEvent.IsRetained = true; // = default

// Condition is enabled or disabled
maintenanceEvent.IsEnabled; // use ChangeIsEnabled(...)

// Status of the source the condition is based upon
maintenanceEvent.Quality = ...;

With the AddComment(…) method and the child Node of the same name, the Comment property of the
Node can be changed. The result of the change can be evaluated using the following properties:

// Identifier of the user who supplied the Comment
maintenanceEvent.ClientUserId = ...;

// Last comment provided by a user
maintenanceEvent.Comment = ...;

If the same Event Node is to be processed in multiple tracks, then a new event branch can be opened. For
this the CreateBranch(…) method of the Node can be used. The unique key for the branch is stored in the
BranchId property. The following snippet shows the most important parts to work with branches of a
OpcConditionNode:

// Uses a new GUID as BranchId
var maintenanceBranchA = maintenanceEvent.CreateBranch(this.SystemContext);

// Uses a custom NodeId as BranchId
var maintenanceBranchB = maintenanceEvent.CreateBranch(this.SystemContext, new
OpcNodeId(10001));

...

// Identifies the branch of the event
maintenanceEvent.BranchId = ...;

// Previous severity of the branch
maintenanceEvent.LastSeverity = ...;

Client Development Introduction Copyright © by TIS

Client Development Introduction 86 / 104 2021/04/15 15:42

Event Nodes with Dialog Conditions
The following types are used: OpcServer, OpcNodeManager and OpcDialogConditionNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A specialization of the OpcConditionNode is the OpcDialogConditionNode. The condition associated
with this Node is a dialog with the subscribers. In this case, such a condition consists of a prompt, response
options as well as information which option is selected by default (DefaultResponse property), which option
to confirm the dialog (OkResponse property) and which is used to cancel the dialog (CancelResponse
property). When such a dialog-driven event is triggered, the Server waits for one of the subscribers to
provide it with an answer in the form of the choice made based on the given response options. The
condition for further processing, the operations linked to the dialog, is thus the answer to a task, a
question, an information or a warning. If a Node has been created as usual, the corresponding properties
can be defined according to the scenario:

var outOfMaterial = new OpcDialogConditionNode(machineOne, "MaterialAlert");

outOfMaterial.Message = "Out of Material"; // Generic event message
outOfMaterial.Prompt = "The machine is out of material. Refill material supply to
continue.";
outOfMaterial.ResponseOptions = new OpcText[] { "Continue", "Cancel" };
outOfMaterial.DefaultResponse = ; // Index of ResponseOption to use
outOfMaterial.CancelResponse = 1; // Index of ResponseOption to use
outOfMaterial.OkResponse = ; // Index of ResponseOption to use

A dialog condition answered by a subscriber is then handled by the Node's RespondCallback as follows.

outOfMaterial.RespondCallback = this.HandleOutOfMaterialResponse;

...

private OpcStatusCode HandleOutOfMaterialResponse(
 OpcNodeContext<OpcDialogConditionNode> context,
 int selectedResponse)
{
 // Handle the response
 if (context.Node.OkResponse == selectedResponse)
 ContinueJob();
 else
 CancelJob();

 // Apply the response
 context.Node.RespondDialog(context, response);

 return OpcStatusCode.Good;
}

Event Nodes with Feedback Conditions
The following types are used: OpcServer, OpcNodeManager and OpcAcknowledgeableConditionNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Based on the OpcConditionNode, the OpcAcknowledgeableConditionNode is a specialization used as
the base class for conditions with feedback requirements. Events of this type define that, when their
condition is met, a “report with acknowledgment of receipt” is issued. The “return receipt” - that is the
feedback - can serve to control further processes as well as to easily acknowledge hints and warnings. The

Client Development Introduction Copyright © by TIS

Client Development Introduction 87 / 104 2021/04/15 15:42

specified feedback mechanism provided for this purpose is divided into two stages. While the first stage is
a kind of “read receipt”, the second level is a kind of “read receipt with a nod”. OPC UA defines the read
receipt as a simple confirmation and the read receipt as a nod with acknowledgment. For both types of
recognition, the Node provides two child Nodes Confirm and Acknowledge. By definition, the execution of
the “acknowledge” process should make an explicit execution of the “confirm” process unnecessary. On
the other hand, it is possible to first send a confirmation and then, separately, an acknowledgment.
Regardless of the order and the type of feedback, a comment from the operator can optionally be specified
for the confirm or acknowledge. Such a Node is created as already known:

var outOfProcessableBounds = new OpcAcknowledgeableConditionNode(machineOne,
"OutOfBoundsAlert");

// Define the condition as: Needs to be acknowledged
outOfProcessableBounds.ChangeIsAcked(this.SystemContext, false);

// Define the condition as: Needs to be confirmed
outOfProcessableBounds.ChangeIsConfirmed(this.SystemContext, false);

During the further process flows, an incoming feedback can be checked using the Node's IsAcked and
IsConfirmed property:

if (outOfProcessableBounds.IsAcked) {
 ...
}

if (outOfProcessableBounds.IsConfirmed) {
 ...
}

It should be noted that a Server must always define the interpretation itself as well as the
logic following the respective feedback. So whether a Server makes use of both feedback options or
only one is left to the respective developer. In the best case, a Server should at least use the Acknowledge
method, as it is defined by the specification as “stronger”.

Event Nodes with Alarm Conditions
The following types are used: OpcServer, OpcNodeManager and OpcAlarmConditionNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

The most important implementation of the OpcAcknowledgeableConditionNode in OPC UA may be the
OpcAlarmConditionNode. With the help of the OpcAlarmConditionNode it is possible to define Event
Nodes whose behavior is comparable to a bedside timer. Accordingly, this Node becomes active (see
IsActive property) if the condition associated with it is met. In the case of an alarm clock, for example,
“reaching the alarm time”. For example, an alarm that has been set with a wake-up time, but should not
be active when it is reached, is called a suppressed alarm (see IsSuppressed and IsSuppressedOrShelved).
But if an alarm becomes active, it can be shelved (see IsSuppressedOrShelved property). In this case, an
alarm can be reset once (“One Shot Shelving”) or timed (“Timed Shelving”) (see Shelving property).
Alternatively, a reset alarm can also be “unshelved” again (see Shelving property). An example of the
OpcAlarmConditionNode API is shown in the following code:

Client Development Introduction Copyright © by TIS

Client Development Introduction 88 / 104 2021/04/15 15:42

var overheating = new OpcAlarmConditionNode(machineOne, "OverheatingAlert");
var idle = new OpcAlarmConditionNode(machineOne, "IdleAlert");

...

overheating.ChangeIsActive(this.SystemContext, true);
idle.ChangeIsActive(this.SystemContext, true);

...

if (overheating.IsActive)
 CancelJob();

if (!idle.IsActive)
 ProcessJob();
else if (idle.IsSuppressed)
 SimulateJob();

Event Nodes with discrete Alarm Conditions
The following types are used: OpcServer, OpcNodeManager, OpcDiscreteAlarmNode,
OpcOffNormalAlarmNode and OpcTripAlarmNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

Starting from the OpcAlarmConditionNode, there are several specializations that have been explicitly
defined for specific types of alarms to specify the form, reason or content of an alarm more precisely by
the nature of the alarm. A subclass of such self-describing alarms are the discrete alarms. The basis for a
discrete alarm is the OpcDiscreteAlarmNode class. It defines an alarm Node that is used to classify
types into alarm states, where the input for the alarm can only accept a certain number of possible values
(e.g. true / false, running / paused / terminated). If an alarm is to represent a discrete condition that is
considered abnormal, consider using the OpcOffNormalAlarmNode or one of its subclasses. Based on
this alarm class, the framework offers a further concretization with the OpcTripAlarmNode. The
OpcTripAlarmNode becomes active when, for example, an abnormal fault occurs on a monitored device,
e.g. when the motor is shut down due to overload. The aforementioned Nodes are created as follows:

var x = new OpcDiscreteAlarmNode(machineOne, "discreteAlert");
var y = new OpcOffNormalAlarmNode(machineOne, "offNormalAlert");
var z = new OpcTripAlarmNode(machineOne, "tripAlert");

Event Nodes with Alarm Conditions for Limits
The following types are used: OpcServer, OpcNodeManager and OpcLimitAlarmNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

If process-specific limit values are to be checked and the output of the test is to be published in the case of
limit value overruns / underruns, the OpcLimitAlarmNode class provides the central starting point for
entering the classes of limit alarms. With this class limits can be divided into up to four levels. To
differentiate them, they are called LowLow, Low, High and HighHigh (called in order of their metric order).
By definition, it is not necessary to define all limits. For this reason, the class offers the possibility to set
the desired limits from the beginning:

Client Development Introduction Copyright © by TIS

Client Development Introduction 89 / 104 2021/04/15 15:42

var positionLimit = new OpcLimitAlarmNode(
 machineOne, "PositionLimit", OpcLimitAlarmStates.HighHigh |
OpcLimitAlarmStates.LowLow);

positionLimit.HighHighLimit = 120; // e.g. mm
positionLimit.LowLowLimit = ; // e.g. mm

Event Nodes with Alarm Conditions for exclusive Limits
The following types are used: OpcServer, OpcNodeManager and OpcExclusiveLimitAlarmNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A subclass of the OpcLimitAlarmNode is the class OpcExclusiveLimitAlarmNode. As its name
suggests, it serves to define limit alerts for exclusive boundaries. Such a limit alarm uses values for the
boundaries that are mutually exclusive. This means that if a limit value has been exceeded / undershot, it
is not possible for another limit value to be exceeded or undershot at the same time. The thereby violated
boundary is described with the Limit property of the Node.

In the OPC UA, there are three further specializations of the OpcExclusiveLimitAlarmNode.

OpcExclusiveDeviationAlarmNode
This type of alarm should be used when a slight deviation from defined limits is detected.

OpcExclusiveLevelAlarmNode
This type of alarm is typically used to report when a limit is exceeded. This typically affects an instrument -
such as a temperature sensor. This type of alarm becomes active when the observed value is above an
upper limit or below a lower limit.

OpcExclusiveRateOfChangeAlarmNode
This type of alarm is commonly used to report an unusual change or absence of a measured value in
relation to the rate at which the value has changed. The alarm becomes active if the rate at which the
value changes exceeds or falls below a defined limit.

Event Nodes with Alarm Conditions for non-exclusive Limits
The following types are used: OpcServer, OpcNodeManager and OpcNonExclusiveLimitAlarmNode.
This section describes a part of the API for topics related to: Alarm & Events, Alarm & Conditions.

A subclass of the OpcLimitAlarmNode is the class OpcNonExclusiveLimitAlarmNode. As its name
suggests, it serves to define limit alerts for non-exclusive boundaries. Such a limit alarm uses values for
the limits that do not exclude each other. This means that when a limit has been exceeded / undershot,
that at the same time another limit may be exceeded / undershot. The limits that are thereby violated can
be checked with the properties IsLowLow, IsLow, IsHigh and IsHighHigh of the Node.

As part of the OPC UA, there are three further specializations of the OpcNonExclusiveLimitAlarmNode.

OpcNonExclusiveDeviationAlarmNode
This type of alarm should be used when a slight deviation from defined limits is detected.

OpcNonExclusiveLevelAlarmNode
This type of alarm is typically used to report when a limit is exceeded. This typically affects an instrument -
such as a temperature sensor. This type of alarm becomes active when the observed value is above an
upper limit or below a lower limit.

OpcNonExclusiveRateOfChangeAlarmNode

Client Development Introduction Copyright © by TIS

Client Development Introduction 90 / 104 2021/04/15 15:42

This type of alarm is commonly used to report an unusual change or absence of a measured value in
relation to the rate at which the value has changed. The alarm becomes active if the rate at which the
value changes exceeds or falls below a defined limit.

Monitoring Request and Response Messages
The following types are used: OpcServer, OpcRequestValidatingEventArgs,
OpcRequestValidatingEventHandler, OpcRequestProcessingEventArgs,
OpcRequestProcessingEventHandler, OpcRequestProcessedEventArgs,
OpcRequestProcessedEventHandler, OpcRequestValidatedEventArgs, OpcRequestValidatedEventHandler,
IOpcServiceRequest and IOpcServiceResponse.

The requests sent by Clients to a Server are processed by the Server as instances of the
IOpcServiceRequest interface, validated and answered by instances of the IOpcServiceResponse interface.
The requests received by the Server can be additionally monitored, logged, routed or denied via the
events RequestProcessing, RequestValidating, RequestValidated and RequestProcessed via user-defined
methods. This is particularly useful in situations when the mechanisms provided by the framework are not
sufficient for the project-specific requirements, in particular for certain restrictions. The procedure of
processing up to the answer of inquiries runs through the following steps:

Receiving the raw data of a Request (Protocol Level of the framework)1.
Deserialization of the raw data for a Request (Message Level of the framework)2.
Preprocessing request: RequestProcessing event3.
Delegation of the request to the corresponding service (Service Level of the framework)4.
Validation of the Request5.

Default validations (Session, Identity, …)1.
userdefined validation: RequestValidating event2.
final validation (check of custom validation)3.
custom completion of validation: RequestValidated event4.

Processing the request (Application Level of the framework)6.
Generating the answer via the corresponding service (Service Level of the framework)7.
Post processing of the Request and its Response: RequestProcessed event8.
Serialization of the Response to raw data (Message Level of the framework)9.
Sending the raw data of the Response (Protocol Level of the framework)10.

The events mentioned under points 3, 5.2, 5.4 and 8. offer the developer of the Server the opportunity to
monitor or influence the processing of Requests via user-defined code. The user-defined code of the
RequestProcessing event is executed immediately after receipt and processing of the user data in the form
of an IOpcServiceRequest instance. The information provided here is used for the primary diagnosis of
message traffic between Client and Server. An event handler registered here should not throw an
exception:

private static void HandleRequestProcessing(object sender, OpcRequestProcessingEventArgs e)
{
 Console.Write("Processing: " + e.Request.ToString());
}

// ...

server.RequestProcessing += HandleRequestProcessing;

The context provided in the OpcRequestProcessingEventArgs always corresponds to an instance of the

Client Development Introduction Copyright © by TIS

Client Development Introduction 91 / 104 2021/04/15 15:42

OpcContext class, which describes only the general environment of message processing. The information
provided in this event handler is also supplemented in the subsequent RequestValidating event with
information about the Session and Identity. In the case of Requests that require a Session, the OpcContext
object provided is the specialization OpcOperationContext. The OpcOperationContext can be used to
perform additional session-related validations:

private static nodesPerSession = new Dictionary<OpcNodeId, int>();

private static void HandleRequestValidating(object sender, OpcRequestValidatingEventArgs e)
{
 Console.Write(" -> Validating: " + e.Request.ToString());

 if (e.RequestType == OpcRequestType.AddNodes) {
 var sessionId = e.Context.SessionId;
 var request = (OpcAddNodesRequest)e.Request;

 lock (sender) {
 if (!nodesPerSession.TryGetValue(sessionId, out var count))
 nodesPerSession.Add(sessionId, count);

 count += request.Commands.Count;
 nodesPerSession[sessionId] = count;

 e.Cancel = (count >= 100);
 }
 }
}

// ...

server.RequestValidating += HandleRequestValidating;

The example shows how to limit the number of “AddNodes” requests per session to 100 “AddNode”
commands. Any further Rrequest will be refused once the restriction has been reached. This is done by
setting the Cancel property of the event's arguments to “true”, which automatically sets the Result
property code of the event's arguments to the “BadNotSupported” value. It is also possible to cancel the
Request by (additional) setting a “Bad” code. An event handler registered at the RequestValidating event
may throw an exception. However, if an exception is raised in the event handler or the Cancel property is
set to “true” or the Result property of the event's arguments is set to a “Bad” code, then the event
handlers of the RequestValidated event are not executed (which is the .NET Framework known Validating-
Validated-Pattern). If, on the other hand, the Request is not aborted, the event handlers of the
RequestValidated event are executed:

void HandleRequestValidated(object sender, OpcRequestValidatedEventArgs e)
{
 Console.Write(" -> Validated");
}

// ...

server.RequestValidated += HandleRequestValidated;

Again, as with the RequestProcessing event, the information provided serves as the primary diagnostic of
message traffic between Client and Server. The benefit of the event is that only after calling the event the
Server also tries to process and answer the Request. An event handler registered here should not throw an
exception. After completing the query processing performed by the Server, the Request is finally answered

Client Development Introduction Copyright © by TIS

Client Development Introduction 92 / 104 2021/04/15 15:42

with the resulting results. The resulting Response can be evaluated together with the Request in the
RequestProcessed event:

private static void HandleRequestProcessed(object sender, OpcRequestProcessedEventArgs e)
{
 if (e.Response.Success)
 Console.WriteLine(" -> Processed!");
 else
 Console.WriteLine(" -> FAILED: {0}!", e.Exception?.Message ??
e.Response.ToString());
}

// ...

server.RequestProcessed += HandleRequestProcessed;

As shown in the above example, the arguments of the event additionally provides information about an
exception that may have occurred during the processing. An event handler registered here should not
throw an exception.

Server Configuration
General Configuration
The following types are used here: OpcServer, OpcCertificateStores and OpcCertificateStoreInfo.

In all code snippets depicted the Server is always configured via the code (if the default configuration of
the Server is not used). The OpcServer instance is the central port for the configuration of the Server
application. All settings concerning security can be found as an instance of the OpcServerSecurity class
via the Security property of the Server. All settings concerning the Certificate Store can be found as an
instance of the OpcCertificateStores class via the CertificateStores property of the Server.

If the Server shall be configurable via XML you can load the configuration of the Server either from a
selected or a random XML file. Instructions are provided in the section “Preparations of Server
Configuration via XML”.

As soon as preparations for configuring the Server configuration via XML have been made, the settings can
be loaded as follows:

Loading the configuration file via App.config
server.Configuration =
OpcApplicationConfiguration.LoadServerConfig("Opc.UaFx.Server");

Loading the configuration file via the path to the XML file
server.Configuration =
OpcApplicationConfiguration.LoadServerConfigFile("MyServerAppNameConfig.xml");

For configuring the Server application amongst others are the following options:

Configurating the application
via Code:

Client Development Introduction Copyright © by TIS

Client Development Introduction 93 / 104 2021/04/15 15:42

// Default: Value of AssemblyTitleAttribute of entry assembly.
server.ApplicationName = "MyServerAppName";

// Default: A null reference to auto complete on start to "urn::" +
ApplicationName
server.ApplicationUri = "http://my.serverapp.uri/";

via XML (underneath the OpcApplicationConfiguration element):
<ApplicationName>MyServerAppName</ApplicationName>
<ApplicationUri>http://my.serverapp.uri/</ApplicationUri>

Configuring the Certificate Store
via Code:
// Default: ".\CertificateStores\Trusted"
server.CertificateStores.ApplicationStore.Path
 = @"%LocalApplicationData%\MyServerAppName\App Certificates";

// Default: ".\CertificateStores\Rejected"
server.CertificateStores.RejectedStore.Path
 = @"%LocalApplicationData%\MyServerAppName\Rejected Certificates";

// Default: ".\CertificateStores\Trusted"
server.CertificateStores.TrustedIssuerStore.Path
 = @"%LocalApplicationData%\MyServerAppName\Trusted Issuer Certificates";

// Default: ".\CertificateStores\Trusted"
server.CertificateStores.TrustedPeerStore.Path
 = @"%LocalApplicationData%\MyServerAppName\Trusted Peer Certificates";

via XML (underneath the OpcApplicationConfiguration element):
 <SecurityConfiguration>
 <ApplicationCertificate>
 <StoreType>Directory</StoreType>
 <StorePath>%LocalApplicationData%\MyServerAppName\CertificateStores\App
Certificates</StorePath>
 <SubjectName>MyServerAppName</SubjectName>
 </ApplicationCertificate>

 <RejectedCertificateStore>
 <StoreType>Directory</StoreType>
<StorePath>%LocalApplicationData%\MyServerAppName\CertificateStores\Rejected
Certificates</StorePath>
 </RejectedCertificateStore>

 <TrustedIssuerCertificates>
 <StoreType>Directory</StoreType>
 <StorePath>%LocalApplicationData%\MyServerAppName\CertificateStores\Trusted
Issuer Certificates</StorePath>
 </TrustedIssuerCertificates>

 <TrustedPeerCertificates>
 <StoreType>Directory</StoreType>
 <StorePath>%LocalApplicationData%\MyServerAppName\CertificateStores\Trusted
Peer Certificates</StorePath>
 </TrustedPeerCertificates>
 </SecurityConfiguration>

Client Development Introduction Copyright © by TIS

Client Development Introduction 94 / 104 2021/04/15 15:42

Certificate Configuration
The following types are used here: OpcServer, OpcCertificateManager, OpcServerSecurity,
OpcCertificateStores and OpcCertificateStoreInfo.

Recommended are certificates of types .der, .pem, .pfx and .p12. If the Server shall provide a secure
endpoint (in which the OpcSecurityMode equals Sign or SignAndEncrypt), the certificate has to have a
private key.

An existing certificate is loaded from any path:1.
var certificate = OpcCertificateManager.LoadCertificate("MyServerCertificate.pfx");

A new certificate is generated (in storage):2.
var certificate = OpcCertificateManager.CreateCertificate(server);

Save a certificate in any path:3.
OpcCertificateManager.SaveCertificate("MyServerCertificate.pfx", certificate);

Set the Server certificate:4.
server.Certificate = certificate;

The certificate has to be stored in the Application Store:5.
if (!server.CertificateStores.ApplicationStore.Contains(certificate))
 server.CertificateStores.ApplicationStore.Add(certificate);

If no or an invalid certificate is used, a new certificate is generated / used by default. If the6.
Server shall only use the mentioned certificate this function has to be deactivated. For
deactivating the function set the property AutoCreateCertificate to the value false:
server.CertificateStores.AutoCreateCertificate = false;

User Identity Configuration
The following types are used here: OpcServer, OpcUserIdentity, OpcServerIdentity, OpcCertificateIdentity,
OpcServerSecurity, OpcAccessControlList, OpcAnonymousAcl, OpcUserNameAcl, OpcCertificateAcl,
OpcAccessControlEntry, OpcOperationType, OpcRequestType and OpcAccessControlMode.

By default a Server allows access without a concrete user identity. This kind of authentication is called
anonymous authentication. When a user identity is mentioned it has to be known to the Server in order to
access the Server with this identity. For example, if a username-password pair or a certificate shall be used
for user identification, the according ACLs (Access Control Lists) have to be configured and activated. Part
of the configuration of control lists is the configuration of ACEs (Access Control Entries). Those are defined
by a principal with a certain identity (username-password pair or certificate) and registered in a list.

Deactivating the anonymous ACL:
server.Security.AnonymousAcl.IsEnabled = false;

Configuring the username-password pair-based ACL:

Client Development Introduction Copyright © by TIS

Client Development Introduction 95 / 104 2021/04/15 15:42

var acl = server.Security.UserNameAcl;

acl.AddEntry("username1", "password1");
acl.AddEntry("username2", "password2");
acl.AddEntry("username3", "password3");
...
acl.IsEnabled = true;

Configuring the certificate-based ACL:
var acl = server.Security.CertificateAcl;

acl.AddEntry(new X509Certificate2(@".\user1.pfx"));
acl.AddEntry(new X509Certificate2(@".\user2.pfx"));
acl.AddEntry(new X509Certificate2(@".\user3.pfx"));
...
acl.IsEnabled = true;

All Access Control Lists defined by the Framework up until now use the mode “Whitelist” as Access Control
Mode. In this mode every entry has - only by defining an Access Control Entry - access to all Types of
Requests, even if the access was not explicitly allowed to the entry. Therefore all non-allowed actions have
to be denied to the entries. Allowed and denied operations can be set directly on the entry which is
available after the note in the ACL.

Remember an Access Control Entry:1.
var user1 = acl.AddEntry("username1", "password1");

Deny the Access Control Entry two rights:2.
user1.Deny(OpcRequestType.Write);
user1.Deny(OpcRequestType.HistoryUpdate);

Allow a previously denied right:3.
user1.Allow(OpcRequestType.HistoryUpdate);

Server Endpoint Configuration
The following types are used here: OpcServer, OpcServerSecurity, OpcSecurityPolicy, OpcSecurityMode
and OpcSecurityAlgorithm.

Endpoints of a Server are defined through the cross product of used Base-Addresses and configured
security strategies for endpoints. The Base-Addresses consist of supported scheme-port pairs and the host
(IP address or DNS name), where several schemes (possible are “http”, “https”, “opc.tcp”, “net.tcp” and
“net.pipe”) can be set for data exchange on different ports. By default the Server does not use a special
policy to supply a secure endpoint. Therefore there are as many endpoints as there are Base-Addresses. If
a Server defines exactly one Base-Address there is only one endpoint with this Base-Address and the
security policy with the mode None. If there are n different Base-Addresses there are n different endpoints
with exactly the same security policy, even if only one special security policy is set. But if there are m
different security policies (s1, s2, s3, …, sm), n different Base-Addresses (b1, b2, …, bn) create the endpoints
that are created by a pairing of policy and Base-Address (s1+b1, s1+b2, …, s1+bn, s2+b1, s2+b2, …, s2+bn,
s3+b1, s3+b2, …, s3+bn, sm+bn, …).

Additional to the Security-Mode of the protection of communication to be used, an Endpoint-Policy defines
a Security-Algorithm and a level. According to the OPC Foundation the level of policy of an endpoint exists

Client Development Introduction Copyright © by TIS

Client Development Introduction 96 / 104 2021/04/15 15:42

as a relative measure for security policies used for the endpoint. An endpoint with a higher level is defined
more secure as an endpoint with a lower level (note that this is merely a neither watched nor imposed
guideline).

If two Security-Policies are followed, they could be defined like this:

Security-Policy A: Level=0, Security-Mode=None, Security-Algorithm=None
Security-Policy B: Level=1, Security-Mode=Sign, Security-Algorithm=Basic256

If furthermore three Base-Addresses are set for different schemes:

Base-Address A: "https://mydomain.com/"
Base-Address B: "opc.tcp://192.168.0.123:4840/"
Base-Address C: "opc.tcp://192.168.0.123:12345/"

The result of the cross product will be these endpoint descriptions:

Endpoint 1: Address="https://mydomain.com/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 2: Address="https://mydomain.com/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 3: Address="opc.tcp://192.168.0.123:4840/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 4: Address="opc.tcp://192.168.0.123:4840/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256
Endpoint 5: Address="opc.tcp://192.168.0.123:12345/", Level=0, Security-Mode=None, Security-
Algorithm=None
Endpoint 6: Address="opc.tcp://192.168.0.123:12345/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

For configuring the (primary) Base-Address either the constructor of the OpcServer Class or the Address
property of an OpcServer instance can be used:

var server = new OpcServer("opc.tcp://localhost:4840/");
server.Address = new Uri("opc.tcp://localhost:4840/");

If the Server shall support further Base-Addresses these can be administrated through the methods
RegisterAddress and UnregisterAddress. All of those Base-Addresses used (therefore registered) by
the Server can be called via the Addresses property. If the value of the Address property was not set
primarily the first address defined through RegisterAddress will be used for the Address property.

Define two more Base-Addresses:

server.RegisterAddress("https://mydomain.com/");
server.RegisterAddress("net.tcp://192.168.0.123:12345/");

Unregister two Base-Addresses from the Server in order for the “main” Base-Address to change:

server.UnregisterAddress("https://mydomain.com/");

// server.Address becomes: "net.tcp://192.168.0.123:12345/"
server.UnregisterAddress("opc.tcp://localhost:4840/");

If all addresses of the Addresses property are unregistered the value of the Address property is not set.

Definition of a secure security policy for endpoints of the Server:

Client Development Introduction Copyright © by TIS

Client Development Introduction 97 / 104 2021/04/15 15:42

server.Security.EndpointPolicies.Add(new OpcSecurityPolicy(
 OpcSecurityMode.Sign, OpcSecurityAlgorithm.Basic256, 3));

By defining a concrete security policy for endpoints the default policy with the mode None is lost. In order
for this policy (not recommended for the productive use) to be supported by the Server it has to be
registered explicitly in the Endpoint-Policy list:

server.Security.EndpointPolicies.Add(new OpcSecurityPolicy(
 OpcSecurityMode.None, OpcSecurityAlgorithm.None,));

Further Security Settings
The following types are used here: OpcServer, OpcServerSecurity,
OpcCertificateValidationFailedEventArgs, OpcCertificateStores und OpcCertificateStoreInfo.

A Client sends its certificate to the Server for authentification during the connecting. The Server can
decide if to approve a connection and trust or untrust a Client using the certificate.

If the Server shall accept only trusted certificates the default acceptance of all certificates must be
deactivated as follows:
server.Security.AutoAcceptUntrustedCertificates = false;

As soon as the default acceptance of all certificates has been deactivated a custom check of
certificates is necessary:
server.CertificateValidationFailed += HandleCertificateValidationFailed;
...
private void HandleCertificateValidationFailed(object sender,
OpcCertificateValidationFailedEventArgs e)
{
 if (e.Certificate.SerialNumber == "...")
 e.Accept = true;
}

If the Client certificate is judged as untrusted it can be declared trusted manually by saving it in
the TrustedPeerStore:
// In context of the event handler the sender is an OpcServer.
var server = (OpcServer)sender;

if (!server.CertificateStores.TrustedPeerStore.Contains(e.Certificate))
 server.CertificateStores.TrustedPeerStore.Add(e.Certificate);

Configuration via XML
If the Server shall also be configurable via XML the Server configuration can be loaded either from a
specific or a random XML file.

Using a certain XML file, it has to show the following default XML tree:

<?xml version="1.0" encoding="utf-8" ?>
<OpcApplicationConfiguration xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ua="http://opcfoundation.org/UA/2008/02/Types.xsd">
</OpcApplicationConfiguration>

Client Development Introduction Copyright © by TIS

Client Development Introduction 98 / 104 2021/04/15 15:42

If a random XML file shall be used for configuration a .config file (referring to an XML file from which the
configuration for the Server shall be loaded) has to be created. This section shows which entries the .config
file has to have and how the XML file must be structured.

Compiling and preparing the App.config of the application:

Add an App.config (if not already existing) to the project1.
Insert this configSections element underneath the configuration elements:2.
<configSections>
 <section name="Opc.UaFx.Server"
 type="Opc.Ua.ApplicationConfigurationSection,
 Opc.UaFx.Advanced,
 Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=0220af0d33d50236" />
</configSections>

Also insert this Opc.UaFx.Server element underneath the configuration elements:3.
<Opc.UaFx.Client>
 <ConfigurationLocation xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd">
 <FilePath>MyServerAppNameConfig.xml</FilePath>
 </ConfigurationLocation>
</Opc.UaFx.Client>

The value of the FilePath element can show to a random data path where you will find the XML4.
configuration file needed. The value shown here would show to a configuration file lying next to the
application.
Save the changes to App.config5.

Creating and preparing the XML configuration file:

Create an XML file with the name used in the App.config and save under the path used in1.
App.config.
Insert this default XML tree for XML configuration files:2.
<?xml version="1.0" encoding="utf-8" ?>
<OpcApplicationConfiguration xmlns="http://opcfoundation.org/UA/SDK/Configuration.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ua="http://opcfoundation.org/UA/2008/02/Types.xsd">
</OpcApplicationConfiguration>

Save changes to XML file3.

Server Application Delivery
This is how you prepare your OPC UA Server application for the use in productive environment.

Application Certificate - Using a concrete certificate
Don't use an automatically Framework-generated certificate in productive use.

If you already have an appropriate certificate for your application you can load your PFX-based certificate
from any random Store and assign it to the Server instance via the OpcCertificateManager:

var certificate = OpcCertificateManager.LoadCertificate("MyServerCertificate.pfx");
server.Certificate = certificate;

Client Development Introduction Copyright © by TIS

Client Development Introduction 99 / 104 2021/04/15 15:42

Note that the application name has to be included in the certificate as “Common Name” (CN) and has to
match with the value of the AssemblyTitle attribute:

[assembly: AssemblyTitle("<Common Name (CN) in Certificate>")]

If that isn't the case you have to set the name used in the certificate via the ApplicationName property
of the Server instance. If the “Domain Component” (DC) part is used in the certificate the value of the
ApplicationUri property of the application has to show the same value:

server.ApplicationName = "<Common Name (CN) in Certificate>";
server.ApplicationUri = new Uri("<Domain Component (DC) in Certificate>");

If you don't already have an appropriate certificate you can use as an application certificate for your
Server you should at least create and use a self-signed certificate via the Certificate Generator of the OPC
Foundation. The Certificate Generator (Opc.Ua.CertificateGenerator.exe) included in the SDK of the
Framework is opened as follows:

Opc.Ua.CertificateGenerator.exe -sp . -an MyServerAppName

The first parameter (-sp) sets saving the certificate in the current list. The second parameter (-an) sets the
name of the Server application using the application certificate. Replace “MyServerAppName” by the name
of your Server application. Note that the Framework for chosing the application certificate uses the
value of the AssemblyTitle attribute and therefore the same value as stated in this attribute is
used for “MyServerAppName”. In alternative to the value in the AssemblyTitle attribute the value used
in the application certificate can be set via the ApplicationName property of the Server instance:

server.ApplicationName = "MyDifferentServerAppName";

It is important that either the value of the AssemblyTitle attribute or the value of the ApplicationName
property equals the value of the second parameter (-an). If you want to set further properties of the
certificate as, for example, the validity in months (default 60 months) or the name of the company or the
names of the domains the Server will be working on, call the generator with the parameter !/?“ in order to
receive a list of all further / possible parameter values:

Opc.Ua.CertificateGenerator.exe /?

After the Certificate Generator was opened with the corresponding parameters, the folders “certs” and
“private” are in the current list. Without changing the names of the folders and the files, copy both folders
in the list that you set as Store for the application certificates. By default that is the folder “Trusted” in the
folder “CertificateStores” next to the application.

If you have set the parameter “ApplicationUri” (-au) you have to set the same value on the
ApplicationUri property of the Server instance:

server.ApplicationUri = new Uri("<ApplicationUri>");

Configuration Surroundings - All files necessary for an XML-based configuration

If the application shall be configurable through a random XML file referenced in the App.config, App.config
has to be in the same list as the application and hold the name of the application as a prefix:

<MyServerAppName>.exe.config

Client Development Introduction Copyright © by TIS

Client Development Introduction 100 / 104 2021/04/15 15:42

If the application is configured through a (certain) XML file, ensure that the file is accessible for the
application.

System Configuration - Administrative Setup

Execute the application in the target system once only with administrative rights to ensure that the Server
has permission to access the network resources. This is necessary, if e.g. the Server shall use a Base-
Address with the scheme “http” or “https”.

Licensing
The OPC UA SDK comes with an evaluation license which can be used unlimited for each
application run for 30 minutes. If this restriction limits your evaluation options, you can request
another evaluation license from us.

After receiving your personalized license key for OPC UA Server development it has to be committed
to the framework. Hereto insert the following code line into your application before accessing the
OpcServer class for the first time. Replace <insert your license code here> with the license key you
received from us.

Opc.UaFx.Server.Licenser.LicenseKey = "<insert your license code here>";

If you purchased a bundle license key for OPC UA Client and Server development from us, it has to
be committed to the framework as follows:

Opc.UaFx.Licenser.LicenseKey = "<insert your license code here>";

Additionally you receive information about the license currently used by the framework via the LicenseInfo
property of the Opc.UaFx.Server.Licenser class for Server licenses and via the Opc.UaFx.Licenser
class for bundle licenses. This works as follows:

ILicenseInfo license = Opc.UaFx.Server.Licenser.LicenseInfo;

if (license.IsExpired)
 Console.WriteLine("The OPA UA SDK license is expired!");

Note that a once set bundle license becomes ineffective by additionally committing a Server
license key!

In the course of development/evaluation, it is mostly irrelevant whether the test license or the license
already purchased is being used. However, as soon as the application goes into productive use, it is
annoying if the application stops working during execution due to an invalid license. For this reason, we
recommend implementing the following code snippet in the Server application and at least executing it
when the application is started:

#if DEBUG
 Opc.UaFx.Server.Licenser.FailIfUnlicensed();
#else
 Opc.UaFx.Server.Licenser.ThrowIfUnlicensed();
#endif

Client Development Introduction Copyright © by TIS

Client Development Introduction 101 / 104 2021/04/15 15:42

Table of Contents
Connection to the Server 1 ..

Connect 1 ...
Disconnect 1 ..
BreakDetection 2 ...
Connection Parameters 2 ...
Endpoints 2 ..

Information about Certificates 3 ...
Certificates in OPC UA 3 ...
Types of Certificates 5 ..
User Identification 5 ...
Aspects of Security 5 ..
Productive use 5 ...

The Client Frame 7 ...
A Client for OPC UA 7 ...
A Client for OPC Classic 7 ...

Values of Node(s) 9 ...
Reading Values 9 ...
Writing Values 10 ...
Processing Values 11 ...

Browsing Nodes 12 ..
Which Nodes does the Server have? 12 ...
Inspecting Node by Node 13 ..
High-Speed Browsing 13 ..
High-Speed Browsing - Details 14 ..

Subscriptions 16 ...
Subscription Creation 16 ..
Subscription Filtering 18 ..

Structured Data 20 ..
Simplest Access 20 ..
Name-based Access 21 ..
Dynamic Access 22 ..
Typed Access 22 ..
Generate Data Types 23 ..
Define Data Types 24 ...
Data Types with optional Fields 25 ...

Historical Data 26 ...
Nodes 29 ..

Method Nodes 29 ...
File Nodes 30 ..
Datatype Nodes 32 ...
Data Nodes 33 ..
Data-Item Nodes 33 ...
Data-Item Nodes for analog Values 33 ...

Events 34 ...
Event Subscription 34 ..
Event Nodes 35 ..
Event Nodes with Conditions 36 ...
Event Nodes with Dialog Conditions 37 ..
Event Nodes with Feedback Conditions 38 ...
Event Nodes with Alarm Conditions 39 ..
Event Nodes with discrete Alarm Conditions 40 ...

Client Development Introduction Copyright © by TIS

Client Development Introduction 102 / 104 2021/04/15 15:42

Event Nodes with Alarm Conditions for Limits 40 ...
Event Nodes with Alarm Conditions for exclusive Limits 41 ...
Event Nodes with Alarm Conditions for non-exclusive Limits 41 ..

Editing the Address Space 42 ..
Adding Nodes 42 ..
Deleting Nodes 46 ..
Adding References 46 ..
Deleting References 47 ..

Client Configuration 48 ...
General Configuration 48 ...
Certificate Configuration 50 ...
User Identity Configuration 51 ...
Server Endpoint Configuration 51 ..
Further Security Settings 52 ...
Configuration via XML 52 ...

Client Application Delivery 54 ..
Licensing 55 ...

The Server 57 ..
Start 57 ..
Stop 57 ...
Parameters 57 ..
Endpoints 58 ..

Information about Certificates 59 ...
Certificates in OPC UA 59 ...
Types of Certificates 60 ..
User Identification 61 ...
Aspects of Security 61 ..
Productive use 61 ...
The Server Frame 62 ..
Node Management 62 ..

Node Creation 62 ...
Node Accessibility 64 ...
Node Updates 64 ..

Values of Node(s) 65 ..
Reading Values 65 ...
Writing Values 66 ...

Historical Data 67 ...
Nodes 75 ..

Method Nodes 75 ...
File Nodes 77 ..
Datatype Nodes 78 ...
Data Nodes 79 ..
Data-Item Nodes 79 ...
Data-Item Nodes for analog Values 80 ...

NodeSets 80 ...
Import NodeSets 81 ...
Implement NodeSets 81 ...

Events 82 ...
Event Reporting 82 ..
Event Nodes 83 ..
Event Nodes with Conditions 85 ...
Event Nodes with Dialog Conditions 86 ..
Event Nodes with Feedback Conditions 86 ...

Client Development Introduction Copyright © by TIS

Client Development Introduction 103 / 104 2021/04/15 15:42

Event Nodes with Alarm Conditions 87 ..
Event Nodes with discrete Alarm Conditions 88 ...
Event Nodes with Alarm Conditions for Limits 88 ...
Event Nodes with Alarm Conditions for exclusive Limits 89 ...
Event Nodes with Alarm Conditions for non-exclusive Limits 89 ..

Monitoring Request and Response Messages 90 ..
Server Configuration 92 ...

General Configuration 92 ...
Certificate Configuration 94 ...
User Identity Configuration 94 ...
Server Endpoint Configuration 95 ..
Further Security Settings 97 ...
Configuration via XML 97 ...

Server Application Delivery 98 ...
Licensing 100 ...

Client Development Introduction Copyright © by TIS

Client Development Introduction 104 / 104 2021/04/15 15:42

	Table of Contents
	Client Development Introduction
	Connection to the Server
	Connect
	Disconnect
	BreakDetection
	Connection Parameters
	Endpoints

	Information about Certificates
	Certificates in OPC UA
	Types of Certificates
	User Identification
	Aspects of Security
	Productive use

	Client Development Guide
	The Client Frame
	A Client for OPC UA
	A Client for OPC Classic

	Values of Node(s)
	Reading Values
	Writing Values
	Processing Values

	Browsing Nodes
	Which Nodes does the Server have?
	Inspecting Node by Node
	High-Speed Browsing
	High-Speed Browsing - Details

	Subscriptions
	Subscription Creation
	Subscription Filtering

	Structured Data
	Simplest Access
	Name-based Access
	Dynamic Access
	Typed Access
	Generate Data Types
	Define Data Types
	Data Types with optional Fields

	Historical Data
	Nodes
	Method Nodes
	File Nodes
	Datatype Nodes
	Data Nodes
	Data-Item Nodes
	Data-Item Nodes for analog Values

	Events
	Event Subscription
	Event Nodes
	Event Nodes with Conditions
	Event Nodes with Dialog Conditions
	Event Nodes with Feedback Conditions
	Event Nodes with Alarm Conditions
	Event Nodes with discrete Alarm Conditions
	Event Nodes with Alarm Conditions for Limits
	Event Nodes with Alarm Conditions for exclusive Limits
	Event Nodes with Alarm Conditions for non-exclusive Limits

	Editing the Address Space
	Adding Nodes
	Deleting Nodes
	Adding References
	Deleting References

	Client Configuration
	General Configuration
	Certificate Configuration
	User Identity Configuration
	Server Endpoint Configuration
	Further Security Settings
	Configuration via XML

	Client Application Delivery
	Licensing

	Server Development Introduction
	The Server
	Start
	Stop
	Parameters
	Endpoints

	Information about Certificates
	Certificates in OPC UA
	Types of Certificates
	User Identification
	Aspects of Security
	Productive use

	Server Development Guide
	[The Server Frame]
	The Server Frame
	Node Management
	Node Creation
	Node Accessibility
	Node Updates

	Values of Node(s)
	Reading Values
	Writing Values

	Historical Data
	Nodes
	Method Nodes
	File Nodes
	Datatype Nodes
	Data Nodes
	Data-Item Nodes
	Data-Item Nodes for analog Values

	NodeSets
	Import NodeSets
	Implement NodeSets

	Events
	Event Reporting
	Event Nodes
	Event Nodes with Conditions
	Event Nodes with Dialog Conditions
	Event Nodes with Feedback Conditions
	Event Nodes with Alarm Conditions
	Event Nodes with discrete Alarm Conditions
	Event Nodes with Alarm Conditions for Limits
	Event Nodes with Alarm Conditions for exclusive Limits
	Event Nodes with Alarm Conditions for non-exclusive Limits

	Monitoring Request and Response Messages
	Server Configuration
	General Configuration
	Certificate Configuration
	User Identity Configuration
	Server Endpoint Configuration
	Further Security Settings
	Configuration via XML

	Server Application Delivery
	Licensing

