
PC-S5-LINK

Data coupling

PC - SIMATIC S5

AG 90 - AG 155

Via PG socket (AS511)

Version 1.00

Requirements:

Operating system: MS-Windows 95, 98, 2000 or NT 4.0

Hardware: V.24 - TTY converter to RS232 of the PC to the PLC

PLC: Simatic S5, all PLCs beginning with AG 90

Delivery contents:

Files on floppy disk / CD:

Main directory

PCS5EASY.HTM file documentation

VERSION.HTM file for error recovery

Directory 'C' files for C / C ++

PCS5EASY.H header file for C / C ++

PCS5EASY.DLL driver DLL

PCS5EASY.LIB lib file for linking with C ++

ES5DEMO.DSP Project file for Visual C ++ V
6.00

ES5DEMO.C example program in 'C ' of a
console application

ES5DEMO.EXE EXE file of the C-Demo

Directory 'Delphi' Files for Delphi

PCS5EASY.PAS Delphi header TPU in source
code

PCS5EASY.DLL driver DLL

ES5DEMO.exe EXE file of Delphi demo

ES5DEMO.cfg

ES5DEMO.dof

ES5DEMO.dpr

ES5DEMO.res

PCS5EASY.dcu

MAIN.DCU

MAIN.DFM

MAIN.PAS

OEM.BMP

Delphi project files

Directory Visual Basic files for Visual Basic

PCS5EASY.DLL Driver DLL, Attention: For
Visual Basic and Excel,
please copy this file into
the Windows directory!

PCS5EASY.BAS header / module file for

Visual Basic

ES5DEMO.XLS Excel file with macro for
demo

Directory Excel files for Excel

PCS5EASY.DLL Driver DLL, Attention: For
Visual Basic and Excel,
please copy this file into
the Windows directory!

PCS5EASY.BAS header / module file for
Visual Basic

ES5DEMO.XLS Excel file with macro for
demo

Functionality:

PC-S5-LINK is a DLL for MS-Windows (95/98/2000 or NT 4.0), which enables the
connection of a PC to the PG interface of the SIMATIC S5. The PC is connected directly
to the PG interface of the PLC via the RS 232 by a V.24 / TTY converter. With simple
functions, the user can quickly access the PLC data using C, C ++, Delphi, Visual Basic
or Excel. No additional communication processor is required in the PLC for the coupling.
Flags, inputs, outputs the PLC can be read and written now.

Two communication modes are supported. The point-to-point communication and the
bus communication (PG-BUS)

The two operating modes (setting see function S5Init):

1. The PG mode protocol:

The PG mode protocol is the replication of the AS511 protocol with respect to the S5's
memory manipulations by the connected programming device. In this mode, only one
PLC can be connected per interface. The advantage is that no programming or
parametrisation in the PLC is required in this operating mode.

2. The PG-BUS protocol

In this version, up to 30 slaves (S5 PLCs from no. 1 to 30) can be connected to the PC
using an RS232 interface with the L1 bus topology. The PLCs are inserted into the bus

system at the programming device interface with the Bus Terminal BT-777. There must
be no master in the bus system (communication processor or master PLC). Ideally take
the UNICOM adapter in this case. This adapter is in a stand-alone housing with
integrated V.24 to the PC and Bus Terminal to the L1-BUS. In addition, this adapter has
its own voltage supply with 220V Euro connection. The installation guidelines that
SIEMENS requires for their L1-BUS. Each connected slave CPU must be configured as
described in the device manuals of the CPUs, PG-Bus devices. For this purpose, the
SIMATIC must be PG bus ready. The parametrisation of the S5 must be carried out in
the start-up OBs OB21 and OB22 or in DB1. The PG number is high byte of the SD57 in
the PLC.

Example: The slave is a PG bus node with the number 4

 L BS 57
 L KH =00ff
 UW ; L1 number must be retained, PGNr gets deleted
 L KH =0400
 OW ; set PGNr
 T BS 57

These two statements must be in OB21 and OB22. The PLC programmer does not have
to worry about further data traffic. The PC has free access to all data (such as the
programming device.)

Functional description in detail:

Please note: The functions are executed with the standard RS232 interface, which
means that the function returns to the caller only after the task has been completed. For
asynchronous operation, simply call these functions from a separate thread, which is
responsible for communicating the system

The following functions are available:

Initialization functions:

Function Description / purpose

ES5Open Initializes the serial interface. At this point, no check is made
as to whether the PLC is available.

Caution: The connection setup is started automatically the
first time the read or write functions are called.

Calling parameter:

No. Memory width Designation Function

1 32-bit value unsigned Com Serial port number:

0 = COM1

1 = COM2 .. etc.

2 32-bit value unsigned Station no. Is used with PG-BUS and corresponds to
the number of the PLC to be addressed.
0 means point-to-point coupling.

ATTENTION ! This parameter is not
considered in the DEMO version and
always set to 0 internally. Please
request separate DEMO version if
required.

Function Description / purpose

ES5Close Closes the connection identified by
Ref. If necessary, the serial interface is
also closed here

Calling parameter:

No. Memory width Designation Function

1 32-bit value
unsigned

Ref The reference of the
connection that was
generated with
ES5Open. Used to
identify the connection
internally.

Functions for reading and writing

Function Description / Purpose

ES5RdW reading from the PLC (E, A, M, DB)
word by word

ES5RdB reading from PLC (E, A, M) byte
orientated

ES5WrW write into the PLC (E, A, M, DB) word
by word

ES5WrB write into the PLC (E, A, M) byte
orientated

Calling parameters:

The read and write functions have the same input parameters:

No. Memory width Designation Function

1 32-bit value unsigned Ref The reference of the connection that was
generated with ES5Open. Used to identify
the connection internally.

2 32-bit value unsigned Typ The selection of the memory area in the
PLC (DB, input, output, flags), which is to
be processed:

'D' = 68 dec. means data block

'E' = 69 dec. means inputs

'A' = 65 dec. means outputs

'M'= 77 dec. means flags

3 32-bit value unsigned DBNo Data block number, this is only used for
type'D '. Otherwise, the value "0"

4 32-bit value unsigned Cnt Number of units (bytes or words) to read or
write.

5 32-bit address Buffer The address on the source or target

memory in the PC. For the word functions,
this is a pointer to a field of 16-bit-wide
words, in the case of the byte functions this
is an address on a field with 8-bit-wide
bytes.

Return values:

value Error Description Meaning

> = 0 everything OK For ES5Open, this is the reference
number for this connection and must be
used as input parameter Ref for all
other functions.

For the other functions, this value is 0 if
the action was successful. Otherwise
the following errors should be checked.

2 For read and write accesses, this
means that the desired data area
does not exist. Data block is not
available or too small.

Check the module length

-1 time-out Timeout occurred, partner does not
answer or no more.

-2 no more resources free. There are no resources left, ES5Open
can be called up to 32 times.

-3 the specified reference was not open No ES5Open was executed with the
specified reference.

-4 interface not available The specified RS232 interface either
does not exist in the system or is
already being used by another
application.

-5 general error Unspecified error occurred

-6 wrong character received Transmission error occurred

-10 desired data type not allowed or not Check that the code for the data type is

supported. correct.

-99 the reference number is invalid Have you called ES5Open?

4660 demo time has expired get the full version

!!! Consider with word operations !!!

Example for flags. This also applies to inputs and outputs but not for data blocks.

The word addressing in the PLC occupies the following bytes, respectively.

Word address assigned bytes

FW0 FB 0 and FB 1

FW1 FB 1 and FB 2

FW2 FB 2 and FB 3

You can see that the use of odd word addresses can result in a double assignment.
Therefore, the word functions (ES5RdW and ES5WrW) only support access to even
word addresses. This means that the start word number in the driver is always multiplied
by 2. This method allows a simple image of the PLC memory in the PC. So a word step
in the PC are 16 bits in the PC and 16 bits in the PLC

Example:

WORD Buf [64];

The call ES5RdW (Ref, 'M', 0, 0, 5, Buf) has the following effect:

PC PLC

Buf [0] DW0

Buf [1] DW 2

Buf [2] DW 4

So you have to halve the starting word number in order to access the PC correctly. This
does not apply to data blocks !! -> Odd word addresses in the I, O and M area of the
PLC can not be read or written by word.

Program examples:

a) Call from C or C ++:

 unsigned char ByteBuffer [512];

 unsigned short int WordBuffer [512];

 // call the word function e.g. read DB 10, from DW0, 10 words

 ES5RdW (Ref,'D', 10, 0, 10, WordBuffer);

 // call the byte function e.g. read DB0 0, 10 bytes

 ES5RdB (Ref, 'M', 0, 0, 10, ByteBuffer);

After successfully call:

PC = PLC

Word Buffer [0] = DB10.DBW0

Word Buffer [1] = DB10.DBW1

Word Buffer [2] = DW10.DBW2

Byte Buffer [0] = MB 0

Byte Buffer [1] = MB 1

b) Call from Delphi:

 ByteBuffer array [0..511] of Byte;

 WordBuffer array [0..511] of Word;

 // call the word function e.g. read DB 10, from DW0, 10 words

 ES5RdW (Ref, LongWord ('D '), 10, 0, 10, @WordBuffer [0]);

 // call the byte function e.g. read MB 0, 10 bytes

 ES5RdB (Ref, 'M', 0, 0, 10, @ByteBuffer [0]);

c) Call from Visual Basic:

 Dim ByteBuffer (0 to 511) as Byte;

 Dim WordBuffer (0..511) as Word;

 // calling the word function e.g. read DB 10, from DW0, 10 words

 ES5RdW (Ref, 68, 10, 0, 10, WordBuffer (0));

 // calling the byte function e.g. read MB 0, 10 bytes

 ES5RdB (Ref, 77, 0, 10, ByteBuffer (0));

After successful call:

PC = PLC

Word Buffer [0] = DB10.DBW0

Word Buffer [1] = DB10.DBW1

Word Buffer [2] = DW10.DBW2

Byte Buffer [0] = MB 0

Byte Buffer [1] = MB 1

C file header:

/* PCS5EASY.H

*/

long WINAPI

ES5Open (DWORD Com, DWORD PGNr);

long WINAPI

ES5Close (long Ref);

long WINAPI

ES5RdW (long Ref, DWORD Typ,

DWORD DBNr, DWORD Ab, DWORD Anz, LPWORD Buffer);

long WINAPI

ES5RdB (long Ref, DWORD Typ,

DWORD DBNr, DWORD Ab, DWORD Anz, LPBYTE Buffer);

long WINAPI

ES5WrW (long Ref, DWORD Typ,

DWORD DBNr, DWORD Ab, DWORD Anz, LPWORD Buffer);

long WINAPI

ES5WrB (long Ref, DWORD Typ,

DWORD DBNr, DWORD Ab, DWORD Anz, LPBYTE Buffer);

Visualbasic file header:

'

'PCS5EASY.BAS

'

Declare Function ES5Open& Lib "PCS5EASY.DLL" (ByVal Com&, ByVal PGNr&)

Declare Function ES5Close& Lib "PCS5EASY.DLL" (ByVal Ref&)

Declare Function ES5RdW& Lib "PCS5EASY.DLL" (ByVal Ref&, _

ByVal Typ&, _

ByVal DBNr&, _

ByVal AbWort&, _

ByVal WortAnz&, _

Wert As Integer)

Declare Function ES5RdB& Lib "PCS5EASY.DLL" (ByVal Ref&, _

ByVal Typ&, _

ByVal DBNr&, _

ByVal AbWort&, _

ByVal WortAnz&, _

Wert As Byte)

Declare Function ES5WrW& Lib "PCS5EASY.DLL" (ByVal Ref&, _

ByVal Typ&, _

ByVal DBNr&, _

ByVal AbWort&, _

ByVal WortAnz&, _

Wert As Integer)

Declare Function ES5WrB& Lib "PCS5EASY.DLL" (ByVal Ref&, _

ByVal Typ&, _

ByVal DBNr&, _

ByVal AbWort&, _

ByVal WortAnz&, _

Wert As Byte)

Delphi file header:

(*

 Modul : PCS5EASY.PAS

*)

unit PCS5EASY;

interface

TYPE PWORD = ^WORD;

TYPE PBYTE = ^BYTE;

FUNCTION

ES5Open (Com : LongWord; PGNr : LongWord) : LongInt; stdcall; external
'PCS5EASY.DLL';

FUNCTION

ES5Close (Ref : LongInt) : LongInt; stdcall; external 'PCS5EASY.DLL';

FUNCTION

ES5RdW (Ref : LongInt;

Typ : Longword;

DBNr : Longword;

AbWort : Longword;

WortAnz : Longword;

Buffer : PWORD) : LongInt; stdcall; external 'PCS5EASY.DLL';

FUNCTION

ES5RdrB (Ref : LongInt;

Typ : Longword;

DBNr : Longword;

Ab : Longword;

Anz : Longword;

Buffer: PBYTE) : LongInt; stdcall; external 'PCS5EASY.DLL';

FUNCTION

ES5WrW (Ref : LongInt;

Typ : Longword;

DBNr : Longword;

AbWort : Longword;

WortAnz : Longword;

Buffer : PWORD) : LongInt; stdcall; external 'PCS5EASY.DLL';

FUNCTION

ES5WrB (Ref : LongInt;

Typ : Longword;

DBNr : Longword;

Ab : Longword;

Anz : Longword;

Buffer: PBYTE) : LongInt; stdcall; external 'PCS5EASY.DLL';

implementation

begin

end.

